BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24053327)

  • 1. Ginsenoside Rg1 inhibits the TSLP production in allergic rhinitis mice.
    Oh HA; Seo JY; Jeong HJ; Kim HM
    Immunopharmacol Immunotoxicol; 2013 Dec; 35(6):678-86. PubMed ID: 24053327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of kaempferol in a murine allergic rhinitis model.
    Oh HA; Han NR; Kim MJ; Kim HM; Jeong HJ
    Eur J Pharmacol; 2013 Oct; 718(1-3):48-56. PubMed ID: 24056122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of IL-32 and TSLP production through the attenuation of caspase-1 activation in an animal model of allergic rhinitis by Naju Jjok (Polygonum tinctorium).
    Jeong HJ; Oh HA; Lee BJ; Kim HM
    Int J Mol Med; 2014 Jan; 33(1):142-50. PubMed ID: 24190435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen sulfide diminishes the levels of thymic stromal lymphopoietin in activated mast cells.
    Han NR; Moon PD; Jeong HJ; Kim HM
    Arch Dermatol Res; 2016 Mar; 308(2):103-13. PubMed ID: 26791024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct effects of imperatorin on allergic rhinitis: imperatorin inhibits caspase-1 activity in vivo and in vitro.
    Oh HA; Kim HM; Jeong HJ
    J Pharmacol Exp Ther; 2011 Oct; 339(1):72-81. PubMed ID: 21730010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2-(4-{2-[(phenylthio)acetyl]carbonohydrazonoyl}phenoxy)acetamide as a new lead compound for management of allergic rhinitis.
    Kim HY; Nam SY; Jang JB; Choi Y; Kang IC; Kim HM; Jeong HJ
    Inflamm Res; 2016 Dec; 65(12):963-973. PubMed ID: 27516212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. β-eudesmol inhibits thymic stromal lymphopoietin through blockade of caspase-1/NF-κB signal cascade in allergic rhinitis murine model.
    Moon PD; Han NR; Lee JS; Kim HY; Hong S; Kim HJ; Yoo MS; Kim HM; Jeong HJ
    Chem Biol Interact; 2018 Oct; 294():101-106. PubMed ID: 30148989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An osteoclastogenesis system, the RANKL/RANK signalling pathway, contributes to aggravated allergic inflammation.
    Nam SY; Kim HY; Min JY; Kim HM; Jeong HJ
    Br J Pharmacol; 2019 Jun; 176(11):1664-1679. PubMed ID: 30737962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bamboo salt reduces allergic responses by modulating the caspase-1 activation in an OVA-induced allergic rhinitis mouse model.
    Kim KY; Nam SY; Shin TY; Park KY; Jeong HJ; Kim HM
    Food Chem Toxicol; 2012 Oct; 50(10):3480-8. PubMed ID: 22824089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential protective role of taurine against experimental allergic inflammation.
    Nam SY; Kim HM; Jeong HJ
    Life Sci; 2017 Sep; 184():18-24. PubMed ID: 28694089
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-allergic and anti-inflammatory effects of the Bcl-2 inhibitor ABT-737 on experimental allergic rhinitis models.
    Kim HY; Jeong HJ; Kim HM
    Eur J Pharmacol; 2018 Aug; 833():34-43. PubMed ID: 29856968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atractylone, an active constituent of KMP6, attenuates allergic inflammation on allergic rhinitis in vitro and in vivo models.
    Kim HY; Nam SY; Hwang SY; Kim HM; Jeong HJ
    Mol Immunol; 2016 Oct; 78():121-132. PubMed ID: 27636508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Src-type tyrosine kinase p56lck is critical for thymic stromal lymphopoietin-induced allergic rhinitis.
    Nam SY; Kim HY; Han NR; Moon PD; Cho JS; Kim HM; Jeong HJ
    Clin Exp Allergy; 2018 Jul; 48(7):875-889. PubMed ID: 29752758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beneficial effects of chelidonic acid on a model of allergic rhinitis.
    Oh HA; Kim HM; Jeong HJ
    Int Immunopharmacol; 2011 Jan; 11(1):39-45. PubMed ID: 20974310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Against NF-κB/thymic stromal lymphopoietin signaling pathway, catechin alleviates the inflammation in allergic rhinitis.
    Pan Z; Zhou Y; Luo X; Ruan Y; Zhou L; Wang Q; Yan YJ; Liu Q; Chen J
    Int Immunopharmacol; 2018 Aug; 61():241-248. PubMed ID: 29894863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis.
    Nam SY; Chung CK; Seo JH; Rah SY; Kim HM; Jeong HJ
    Int Immunopharmacol; 2014 Nov; 23(1):273-82. PubMed ID: 25242385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis.
    Kim HY; Kim J; Jeong HJ; Kim HM
    Mol Immunol; 2019 Oct; 114():362-368. PubMed ID: 31450181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Expression of thymic stromal lymphopoietin in nasal mucosa of a mouse model with allergic rhinitis].
    Xu M; Guo Y
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2009 Sep; 23(17):794-5, 799. PubMed ID: 20030046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The inhibition of 18β-sodium glycyrrhetinic acid on thymic stromal lymphopoietin expression in the nasal mucosa of allergic rhinitis rats].
    Ji J; Gui Y; Wang YH; Hou Y; Chen KB; Xi KH; Chen XW; Liu XH; Zhang XB
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2019 Jun; 54(6):456-463. PubMed ID: 31262112
    [No Abstract]   [Full Text] [Related]  

  • 20. Antiallergic effect of gami-hyunggyeyeongyotang on ovalbumin-induced allergic rhinitis in mouse and human mast cells.
    Im YS; Lee B; Kim EY; Min JH; Song DU; Lim JM; Eom JW; Cho HJ; Sohn Y; Jung HS
    J Chin Med Assoc; 2016 Apr; 79(4):185-94. PubMed ID: 26852212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.