These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 24053334)
1. Elucidating features that drive the design of selective antifolates using crystal structures of human dihydrofolate reductase. Lamb KM; G-Dayanandan N; Wright DL; Anderson AC Biochemistry; 2013 Oct; 52(41):7318-26. PubMed ID: 24053334 [TBL] [Abstract][Full Text] [Related]
2. Crystal structures of Candida albicans dihydrofolate reductase bound to propargyl-linked antifolates reveal the flexibility of active site loop residues critical for ligand potency and selectivity. Paulsen JL; Bendel SD; Anderson AC Chem Biol Drug Des; 2011 Oct; 78(4):505-12. PubMed ID: 21726415 [TBL] [Abstract][Full Text] [Related]
3. Crystal structures of Klebsiella pneumoniae dihydrofolate reductase bound to propargyl-linked antifolates reveal features for potency and selectivity. Lamb KM; Lombardo MN; Alverson J; Priestley ND; Wright DL; Anderson AC Antimicrob Agents Chemother; 2014 Dec; 58(12):7484-91. PubMed ID: 25288083 [TBL] [Abstract][Full Text] [Related]
4. 2,4-Diamino-5-(2'-arylpropargyl)pyrimidine derivatives as new nonclassical antifolates for human dihydrofolate reductase inhibition. Algul O; Paulsen JL; Anderson AC J Mol Graph Model; 2011 Feb; 29(5):608-13. PubMed ID: 21146434 [TBL] [Abstract][Full Text] [Related]
5. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Senkovich O; Schormann N; Chattopadhyay D Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691 [TBL] [Abstract][Full Text] [Related]
7. Structure-guided development of efficacious antifungal agents targeting Candida glabrata dihydrofolate reductase. Liu J; Bolstad DB; Smith AE; Priestley ND; Wright DL; Anderson AC Chem Biol; 2008 Sep; 15(9):990-6. PubMed ID: 18804036 [TBL] [Abstract][Full Text] [Related]
8. Nonracemic Antifolates Stereoselectively Recruit Alternate Cofactors and Overcome Resistance in S. aureus. Keshipeddy S; Reeve SM; Anderson AC; Wright DL J Am Chem Soc; 2015 Jul; 137(28):8983-90. PubMed ID: 26098608 [TBL] [Abstract][Full Text] [Related]
9. Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities. Bhosle A; Chandra N FEBS J; 2016 Mar; 283(6):1139-67. PubMed ID: 26797763 [TBL] [Abstract][Full Text] [Related]
10. Crystal structures of wild-type and mutant methicillin-resistant Staphylococcus aureus dihydrofolate reductase reveal an alternate conformation of NADPH that may be linked to trimethoprim resistance. Frey KM; Liu J; Lombardo MN; Bolstad DB; Wright DL; Anderson AC J Mol Biol; 2009 Apr; 387(5):1298-308. PubMed ID: 19249312 [TBL] [Abstract][Full Text] [Related]
11. Correlations of inhibitor kinetics for Pneumocystis jirovecii and human dihydrofolate reductase with structural data for human active site mutant enzyme complexes. Cody V; Pace J; Makin J; Piraino J; Queener SF; Rosowsky A Biochemistry; 2009 Mar; 48(8):1702-11. PubMed ID: 19196009 [TBL] [Abstract][Full Text] [Related]
12. Structural analysis of the active sites of dihydrofolate reductase from two species of Candida uncovers ligand-induced conformational changes shared among species. Paulsen JL; Viswanathan K; Wright DL; Anderson AC Bioorg Med Chem Lett; 2013 Mar; 23(5):1279-84. PubMed ID: 23375226 [TBL] [Abstract][Full Text] [Related]
13. New insights into DHFR interactions: analysis of Pneumocystis carinii and mouse DHFR complexes with NADPH and two highly potent 5-(omega-carboxy(alkyloxy) trimethoprim derivatives reveals conformational correlations with activity and novel parallel ring stacking interactions. Cody V; Pace J; Chisum K; Rosowsky A Proteins; 2006 Dec; 65(4):959-69. PubMed ID: 17019704 [TBL] [Abstract][Full Text] [Related]
14. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Krucinska J; Lombardo MN; Erlandsen H; Estrada A; Si D; Viswanathan K; Wright DL Commun Biol; 2022 May; 5(1):459. PubMed ID: 35562546 [TBL] [Abstract][Full Text] [Related]
16. Molecular modelling of trimethoprim complexes of human wild-type and mutant dihydrofolate reductases: identification of two subsets of binding residues in the antifolate binding site. Pan R; Bowen D; Southerland WM Biopharm Drug Dispos; 1999 Oct; 20(7):335-40. PubMed ID: 10760841 [TBL] [Abstract][Full Text] [Related]
17. Analysis of three crystal structure determinations of a 5-methyl-6-N-methylanilino pyridopyrimidine antifolate complex with human dihydrofolate reductase. Cody V; Luft JR; Pangborn W; Gangjee A Acta Crystallogr D Biol Crystallogr; 2003 Sep; 59(Pt 9):1603-9. PubMed ID: 12925791 [TBL] [Abstract][Full Text] [Related]
18. Protein flexibility and species specificity in structure-based drug discovery: dihydrofolate reductase as a test system. Bowman AL; Lerner MG; Carlson HA J Am Chem Soc; 2007 Mar; 129(12):3634-40. PubMed ID: 17335207 [TBL] [Abstract][Full Text] [Related]
19. Crystal Structures of Trimethoprim-Resistant DfrA1 Rationalize Potent Inhibition by Propargyl-Linked Antifolates. Lombardo MN; G-Dayanandan N; Wright DL; Anderson AC ACS Infect Dis; 2016 Feb; 2(2):149-56. PubMed ID: 27624966 [TBL] [Abstract][Full Text] [Related]