BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 24053439)

  • 1. Model of gene expression in extreme cold - reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    BMC Genomics; 2013 Sep; 14():634. PubMed ID: 24053439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution in chronic cold: varied loss of cellular response to heat in Antarctic notothenioid fish.
    Bilyk KT; Vargas-Chacoff L; Cheng CC
    BMC Evol Biol; 2018 Sep; 18(1):143. PubMed ID: 30231868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-seq reveals a diminished acclimation response to the combined effects of ocean acidification and elevated seawater temperature in Pagothenia borchgrevinki.
    Huth TJ; Place SP
    Mar Genomics; 2016 Aug; 28():87-97. PubMed ID: 26969095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish.
    Chen Z; Cheng CH; Zhang J; Cao L; Chen L; Zhou L; Jin Y; Ye H; Deng C; Dai Z; Xu Q; Hu P; Sun S; Shen Y; Chen L
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):12944-9. PubMed ID: 18753634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of temperature adaptation on the ubiquitin-proteasome pathway in notothenioid fishes.
    Todgham AE; Crombie TA; Hofmann GE
    J Exp Biol; 2017 Feb; 220(Pt 3):369-378. PubMed ID: 27872216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.
    Shin SC; Kim SJ; Lee JK; Ahn DH; Kim MG; Lee H; Lee J; Kim BK; Park H
    PLoS One; 2012; 7(8):e43762. PubMed ID: 22916302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes.
    Chen L; Lu Y; Li W; Ren Y; Yu M; Jiang S; Fu Y; Wang J; Peng S; Bilyk KT; Murphy KR; Zhuang X; Hune M; Zhai W; Wang W; Xu Q; Cheng CC
    Gigascience; 2019 Apr; 8(4):. PubMed ID: 30715292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unique Mitochondrial Gene Block Inversion in Antarctic Trematomin Fishes: A Cautionary Tale.
    Patel S; Evans CW; Stuckey A; Matzke NJ; Millar CD
    J Hered; 2022 Jul; 113(4):414-420. PubMed ID: 35657776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.
    Huth TJ; Place SP
    BMC Genomics; 2013 Nov; 14():805. PubMed ID: 24252228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is cold the new hot? Elevated ubiquitin-conjugated protein levels in tissues of Antarctic fish as evidence for cold-denaturation of proteins in vivo.
    Todgham AE; Hoaglund EA; Hofmann GE
    J Comp Physiol B; 2007 Nov; 177(8):857-66. PubMed ID: 17710411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment.
    Shin SC; Ahn DH; Kim SJ; Pyo CW; Lee H; Kim MK; Lee J; Lee JE; Detrich HW; Postlethwait JH; Edwards D; Lee SG; Lee JH; Park H
    Genome Biol; 2014 Sep; 15(9):468. PubMed ID: 25252967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete mitochondrial genome of the Antarctic cod icefish,
    Liu Y; Yang M; Zhou T; Xing H; Chen L; Zhang D
    Mitochondrial DNA B Resour; 2016 Jul; 1(1):432-433. PubMed ID: 33473508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Metabolic Capacity of Antarctic Fishes to Acclimate to Future Ocean Conditions.
    Todgham AE; Mandic M
    Integr Comp Biol; 2020 Dec; 60(6):1425-1437. PubMed ID: 32814956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constitutive roles for inducible genes: evidence for the alteration in expression of the inducible hsp70 gene in Antarctic notothenioid fishes.
    Place SP; Zippay ML; Hofmann GE
    Am J Physiol Regul Integr Comp Physiol; 2004 Aug; 287(2):R429-36. PubMed ID: 15117724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of elevated temperature on membrane lipid saturation in Antarctic notothenioid fish.
    Malekar VC; Morton JD; Hider RN; Cruickshank RH; Hodge S; Metcalf VJ
    PeerJ; 2018; 6():e4765. PubMed ID: 29796342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of Proteins to the Cold in Antarctic Fish: A Role for Methionine?
    Berthelot C; Clarke J; Desvignes T; William Detrich H; Flicek P; Peck LS; Peters M; Postlethwait JH; Clark MS
    Genome Biol Evol; 2019 Jan; 11(1):220-231. PubMed ID: 30496401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifreeze glycoprotein levels in Antarctic notothenioid fishes inhabiting different thermal environments and the effect of warm acclimation.
    Jin Y; DeVries AL
    Comp Biochem Physiol B Biochem Mol Biol; 2006 Jul; 144(3):290-300. PubMed ID: 16725360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of chaperome gene expression and regulatory elements in the antarctic notothenioid fishes.
    Bilyk KT; Zhuang X; Vargas-Chacoff L; Cheng CC
    Heredity (Edinb); 2021 Mar; 126(3):424-441. PubMed ID: 33149264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.