These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 24053447)
1. Flash nanoprecipitation: particle structure and stability. Pustulka KM; Wohl AR; Lee HS; Michel AR; Han J; Hoye TR; McCormick AV; Panyam J; Macosko CW Mol Pharm; 2013 Nov; 10(11):4367-77. PubMed ID: 24053447 [TBL] [Abstract][Full Text] [Related]
2. Flash nanoprecipitation: prediction and enhancement of particle stability via drug structure. Zhu Z Mol Pharm; 2014 Mar; 11(3):776-86. PubMed ID: 24484077 [TBL] [Abstract][Full Text] [Related]
3. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers. Jackson JK; Hung T; Letchford K; Burt HM Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895 [TBL] [Abstract][Full Text] [Related]
4. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396 [TBL] [Abstract][Full Text] [Related]
5. Effects of amphiphilic diblock copolymer on drug nanoparticle formation and stability. Zhu Z Biomaterials; 2013 Dec; 34(38):10238-48. PubMed ID: 24070569 [TBL] [Abstract][Full Text] [Related]
6. One-step fabrication of polymeric Janus nanoparticles for drug delivery. Xie H; She ZG; Wang S; Sharma G; Smith JW Langmuir; 2012 Mar; 28(9):4459-63. PubMed ID: 22251479 [TBL] [Abstract][Full Text] [Related]
7. Synthesis, characterization, and evaluation of paclitaxel loaded in six-arm star-shaped poly(lactic-co-glycolic acid). Chen Y; Yang Z; Liu C; Wang C; Zhao S; Yang J; Sun H; Zhang Z; Kong D; Song C Int J Nanomedicine; 2013; 8():4315-26. PubMed ID: 24235829 [TBL] [Abstract][Full Text] [Related]
8. Orally administered nanocurcumin to attenuate morphine tolerance: comparison between negatively charged PLGA and partially and fully PEGylated nanoparticles. Shen H; Hu X; Szymusiak M; Wang ZJ; Liu Y Mol Pharm; 2013 Dec; 10(12):4546-51. PubMed ID: 24195658 [TBL] [Abstract][Full Text] [Related]
9. Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid). Wang G; Chen Y; Wang P; Wang Y; Hong H; Li Y; Qian J; Yuan Y; Yu B; Liu C Acta Biomater; 2016 Jan; 29():248-260. PubMed ID: 26476340 [TBL] [Abstract][Full Text] [Related]
11. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973 [TBL] [Abstract][Full Text] [Related]
12. Polyelectrolyte coated polymeric nanoparticles for controlled release of docetaxel. Agrawal R; Shanavas A; Yadav S; Aslam M; Bahadur D; Srivastava R J Biomed Nanotechnol; 2012 Feb; 8(1):19-28. PubMed ID: 22515091 [TBL] [Abstract][Full Text] [Related]
13. Nanotechnology for biomaterials engineering: structural characterization of amphiphilic polymeric nanoparticles by 1H NMR spectroscopy. Hrkach JS; Peracchia MT; Domb A; Lotan N; Langer R Biomaterials; 1997 Jan; 18(1):27-30. PubMed ID: 9003893 [TBL] [Abstract][Full Text] [Related]
14. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol). von Burkersroda F; Gref R; Göpferich A Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807 [TBL] [Abstract][Full Text] [Related]
15. Formulation of diblock polymeric nanoparticles through nanoprecipitation technique. Karve S; Werner ME; Cummings ND; Sukumar R; Wang EC; Zhang YA; Wang AZ J Vis Exp; 2011 Sep; (55):. PubMed ID: 21968609 [TBL] [Abstract][Full Text] [Related]
16. Preparation and in vitro characterization of 9-nitrocamptothecin-loaded long circulating nanoparticles for delivery in cancer patients. Derakhshandeh K; Soheili M; Dadashzadeh S; Saghiri R Int J Nanomedicine; 2010 Aug; 5():463-71. PubMed ID: 20957168 [TBL] [Abstract][Full Text] [Related]
17. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Witschi C; Doelker E J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930 [TBL] [Abstract][Full Text] [Related]
18. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration. Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528 [TBL] [Abstract][Full Text] [Related]
19. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface. Kim HC; Lee H; Khetan J; Won YY Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595 [TBL] [Abstract][Full Text] [Related]
20. Effects of block copolymer properties on nanocarrier protection from in vivo clearance. D'Addio SM; Saad W; Ansell SM; Squiers JJ; Adamson DH; Herrera-Alonso M; Wohl AR; Hoye TR; Macosko CW; Mayer LD; Vauthier C; Prud'homme RK J Control Release; 2012 Aug; 162(1):208-17. PubMed ID: 22732478 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]