BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 24054625)

  • 21. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C; Zhao S; Qu F; Han W; You J
    Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aptamer-based colorimetric detection of platelet-derived growth factor using unmodified gold nanoparticles.
    Chang CC; Wei SC; Wu TH; Lee CH; Lin CW
    Biosens Bioelectron; 2013 Apr; 42():119-23. PubMed ID: 23202340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes.
    Liu J; Lu Y
    Nat Protoc; 2006; 1(1):246-52. PubMed ID: 17406240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhancing sensitivity and selectivity of long-period grating sensors using structure-switching aptamers bound to gold-doped macroporous silica coatings.
    Carrasquilla C; Xiao Y; Xu CQ; Li Y; Brennan JD
    Anal Chem; 2011 Oct; 83(20):7984-91. PubMed ID: 21951178
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intracellular dark-field imaging of ATP and photothermal therapy using a colorimetric assay based on gold nanoparticle aggregation via tetrazine/trans-cyclooctene cycloaddition.
    Liu F; Guo Y; Hu Y; Zhang X; Zheng X
    Anal Bioanal Chem; 2019 Sep; 411(22):5845-5854. PubMed ID: 31278549
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A highly selective sandwich-type FRET assay for ATP detection based on silica coated photon upconverting nanoparticles and split aptamer.
    He X; Li Z; Jia X; Wang K; Yin J
    Talanta; 2013 Jul; 111():105-10. PubMed ID: 23622532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual sensing reporter system of assembled gold nanoparticles toward the sequential colorimetric detection of adenosine and Cr(III).
    Zhu R; Song J; Zhou Y; Lei P; Li Z; Li HW; Shuang S; Dong C
    Talanta; 2019 Nov; 204():294-303. PubMed ID: 31357297
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A label-free hairpin aptamer probe for colorimetric detection of adenosine triphosphate based on the anti-aggregation of gold nanoparticles.
    Sang F; Zhang X; Liu J; Yin S; Zhang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():122-127. PubMed ID: 30928837
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An enzyme-free and amplified colorimetric detection strategy via target-aptamer binding triggered catalyzed hairpin assembly.
    Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; He Y; Wang K
    Chem Commun (Camb); 2015 Jan; 51(5):937-40. PubMed ID: 25435498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer.
    Song KM; Cho M; Jo H; Min K; Jeon SH; Kim T; Han MS; Ku JK; Ban C
    Anal Biochem; 2011 Aug; 415(2):175-81. PubMed ID: 21530479
    [TBL] [Abstract][Full Text] [Related]  

  • 32. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
    Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH
    Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles.
    Soh JH; Lin Y; Rana S; Ying JY; Stevens MM
    Anal Chem; 2015 Aug; 87(15):7644-52. PubMed ID: 26197040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles.
    Liang G; Cai S; Zhang P; Peng Y; Chen H; Zhang S; Kong J
    Anal Chim Acta; 2011 Mar; 689(2):243-9. PubMed ID: 21397080
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein.
    Deng C; Chen J; Nie L; Nie Z; Yao S
    Anal Chem; 2009 Dec; 81(24):9972-8. PubMed ID: 20000640
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe.
    Li L; Li B; Qi Y; Jin Y
    Anal Bioanal Chem; 2009 Apr; 393(8):2051-7. PubMed ID: 19198811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system.
    Qi Y; Li B
    Chemistry; 2011 Feb; 17(5):1642-8. PubMed ID: 21268167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structured DNA Aptamer Interactions with Gold Nanoparticles.
    Mirau PA; Smith JE; Chávez JL; Hagen JA; Kelley-Loughnane N; Naik R
    Langmuir; 2018 Feb; 34(5):2139-2146. PubMed ID: 29283584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colorimetric logic gates based on aptamer-crosslinked hydrogels.
    Yin BC; Ye BC; Wang H; Zhu Z; Tan W
    Chem Commun (Camb); 2012 Jan; 48(9):1248-50. PubMed ID: 22158758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.
    Gao Z; Qiu Z; Lu M; Shu J; Tang D
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):1006-1012. PubMed ID: 27825528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.