These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 24054678)
21. Determination of recovery rates of adsorbents for sampling very volatile organic compounds (C Richter M; Juritsch E; Jann O J Chromatogr A; 2020 Aug; 1626():461389. PubMed ID: 32797860 [TBL] [Abstract][Full Text] [Related]
22. New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS. Maceira A; Vallecillos L; Borrull F; Marcé RM Sci Total Environ; 2017 Dec; 599-600():1718-1727. PubMed ID: 28535600 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of a hypercrosslinked polystyrene, MN-200, as a sorbent for the preconcentration of volatile organic compounds in air. Baya MP; Siskos PA; Davankov VA J AOAC Int; 2000; 83(3):579-83. PubMed ID: 10868579 [TBL] [Abstract][Full Text] [Related]
24. Siloxane removal from landfill and digester gas - a technology overview. Ajhar M; Travesset M; Yüce S; Melin T Bioresour Technol; 2010 May; 101(9):2913-23. PubMed ID: 20061140 [TBL] [Abstract][Full Text] [Related]
25. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options. Woolfenden E J Chromatogr A; 2010 Apr; 1217(16):2674-84. PubMed ID: 20106481 [TBL] [Abstract][Full Text] [Related]
26. Multi-layer cartridges filled with multi-walled carbon nanotubes for the determination of volatile organic compounds in indoor air. Liu J; Li L; Ning Z; Zhao P; Fan H Anal Sci; 2008 Apr; 24(4):515-9. PubMed ID: 18403845 [TBL] [Abstract][Full Text] [Related]
27. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Rauert C; Shoieb M; Schuster JK; Eng A; Harner T Environ Pollut; 2018 Jul; 238():94-102. PubMed ID: 29547866 [TBL] [Abstract][Full Text] [Related]
28. Application of thermal desorption to the development of a gas chromatographic/mass spectrometric method for the determination of toluene, chlorinated aromatic hydrocarbons, and 2,3,7,8-tetrachlorodibenzo-p-dioxin in combustion emissions. Donaldson JD; Grimes SM; Mehta L; Jafari AJ J AOAC Int; 2003; 86(1):39-43. PubMed ID: 12607738 [TBL] [Abstract][Full Text] [Related]
29. Ozone artifacts and carbonyl measurements using Tenax GR, Tenax TA, Carbopack B, and Carbopack X adsorbents. Lee JH; Batterman SA; Jia C; Chernyak S J Air Waste Manag Assoc; 2006 Nov; 56(11):1503-17. PubMed ID: 17117735 [TBL] [Abstract][Full Text] [Related]
30. Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption. Application to the retention of seven volatile organic compounds. López P; Batlle R; Nerín C; Cacho J; Ferreira V J Chromatogr A; 2007 Jan; 1139(1):36-44. PubMed ID: 17126844 [TBL] [Abstract][Full Text] [Related]
31. Selectivity and limitations of carbon sorption tubes for capturing siloxanes in biogas during field sampling. Tansel B; Surita SC Waste Manag; 2016 Jun; 52():122-9. PubMed ID: 27055363 [TBL] [Abstract][Full Text] [Related]
32. Development of a sensitive thermal desorption method for the determination of trihalomethanes in humid ambient and alveolar air. Caro J; Gallego M Talanta; 2008 Aug; 76(4):847-53. PubMed ID: 18656668 [TBL] [Abstract][Full Text] [Related]
33. Relevance of an organic solvent for absorption of siloxanes. Ghorbel L; Tatin R; Couvert A Environ Technol; 2014; 35(1-4):372-82. PubMed ID: 24600877 [TBL] [Abstract][Full Text] [Related]
34. [A gas chromatographic study on the characters of adsorbents in the enrichment of organic compounds from air samples]. He D; Zhao L; Xu F; Li S; Shen Z Se Pu; 1997 Jul; 15(4):274-7. PubMed ID: 15739453 [TBL] [Abstract][Full Text] [Related]
35. Siloxane in baking moulds, emission to indoor air and migration to food during baking with an electric oven. Fromme H; Witte M; Fembacher L; Gruber L; Hagl T; Smolic S; Fiedler D; Sysoltseva M; Schober W Environ Int; 2019 May; 126():145-152. PubMed ID: 30798195 [TBL] [Abstract][Full Text] [Related]
36. Analysis of the volatile components emitted from cut tobacco processing by gas chromatography/mass spectrometry thermal desorption system. Gao Q; Sha Y; Wu D; Liu B; Chen C; Fang D Talanta; 2012 Nov; 101():198-202. PubMed ID: 23158312 [TBL] [Abstract][Full Text] [Related]
37. Basic considerations to minimize bias in collection and analysis of volatile methyl siloxanes in environmental samples. Gerhards R; Seston RM; Kozerski GE; McNett DA; Boehmer T; Durham JA; Xu S Sci Total Environ; 2022 Dec; 851(Pt 2):158275. PubMed ID: 36030859 [TBL] [Abstract][Full Text] [Related]
38. Extent of sample loss on the sampling device and the resulting experimental biases when collecting volatile fatty acids (VFAs) in air using sorbent tubes. Kim YH; Kim KH Anal Chem; 2013 Aug; 85(16):7818-25. PubMed ID: 23869450 [TBL] [Abstract][Full Text] [Related]
39. Minimisation of artefact formation of dimethyl disulphide during sampling and analysis of methanethiol in air using solid sorbent materials. Andersen KB; Hansen MJ; Feilberg A J Chromatogr A; 2012 Jul; 1245():24-31. PubMed ID: 22658137 [TBL] [Abstract][Full Text] [Related]
40. [Determination of 67 volatile organic compounds in ambient air using thermal desorption-gas chromatography-mass spectrometry]. Zhu X; Ma H; Zhu X; Chen J Se Pu; 2019 Nov; 37(11):1228-1234. PubMed ID: 31642277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]