BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 24054704)

  • 1. Discovery of novel drugs for promising targets.
    Martell RE; Brooks DG; Wang Y; Wilcoxen K
    Clin Ther; 2013 Sep; 35(9):1271-81. PubMed ID: 24054704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Importance of molecular computer modeling in anticancer drug development.
    Geromichalos GD
    J BUON; 2007 Sep; 12 Suppl 1():S101-18. PubMed ID: 17935268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
    Kong D; Yamori T
    Bioorg Med Chem; 2012 Mar; 20(6):1947-51. PubMed ID: 22336246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The era of cancer discovery.
    Cantley LC; Baselga J
    Cancer Discov; 2011 Jun; 1(1):1. PubMed ID: 22586302
    [No Abstract]   [Full Text] [Related]  

  • 5. Overview on the current status of virtual high-throughput screening and combinatorial chemistry approaches in multi-target anticancer drug discovery; Part I.
    Geromichalos GD; Alifieris CE; Geromichalou EG; Trafalis DT
    J BUON; 2016; 21(4):764-779. PubMed ID: 27685895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects.
    Wong MS; Sidik SM; Mahmud R; Stanslas J
    Clin Exp Pharmacol Physiol; 2013 May; 40(5):307-19. PubMed ID: 23534409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marking off new territory in the search for anticancer compounds: epigenetic mechanisms add complexity and promise to cancer research efforts.
    Nelson B
    Cancer Cytopathol; 2012 Jun; 120(3):143-4. PubMed ID: 22692980
    [No Abstract]   [Full Text] [Related]  

  • 10. A natural products approach to drug discovery: probing modes of action of antitumor agents by genome-scale cDNA library screening.
    Luesch H; Abreu P
    Methods Mol Biol; 2009; 572():261-77. PubMed ID: 20694698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the National Cancer Institute in drug development.
    Doroshow J
    Clin Adv Hematol Oncol; 2005 Apr; 3(4):257-8. PubMed ID: 16166997
    [No Abstract]   [Full Text] [Related]  

  • 12. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening methods for influenza antiviral drug discovery.
    Atkins C; Evans CW; White EL; Noah JW
    Expert Opin Drug Discov; 2012 May; 7(5):429-38. PubMed ID: 22435452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting loss-of-function mutations in tumor-suppressor genes as a strategy for development of cancer therapeutic agents.
    Wang H; Han H; Mousses S; Von Hoff DD
    Semin Oncol; 2006 Aug; 33(4):513-20. PubMed ID: 16890805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid identification and validation of novel targeted approaches for Glioblastoma: A combined ex vivo-in vivo pharmaco-omic model.
    Daher A; de Groot J
    Exp Neurol; 2018 Jan; 299(Pt B):281-288. PubMed ID: 28923369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The opportunities and challenges of personalized genome-based molecular therapies for cancer: targets, technologies, and molecular chaperones.
    Workman P
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S45-56. PubMed ID: 12819933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of novel, 384-well high-throughput assay panels for human drug transporters: drug interaction and safety assessment in support of discovery research.
    Tang H; Shen DR; Han YH; Kong Y; Balimane P; Marino A; Gao M; Wu S; Xie D; Soars MG; O'Connell JC; Rodrigues AD; Zhang L; Cvijic ME
    J Biomol Screen; 2013 Oct; 18(9):1072-83. PubMed ID: 24062352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promising new agents under development by the Division of Cancer Treatment, Diagnosis, and Centers of the National Cancer Institute.
    Christian MC; Pluda JM; Ho PT; Arbuck SG; Murgo AJ; Sausville EA
    Semin Oncol; 1997 Apr; 24(2):219-40. PubMed ID: 9129691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zebrafish: a powerful platform for in vivo, HTS drug discovery.
    Delvecchio C; Tiefenbach J; Krause HM
    Assay Drug Dev Technol; 2011 Aug; 9(4):354-61. PubMed ID: 21309713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The path to oncology drug target validation: an industry perspective.
    Cortés-Cros M; Schmelzle T; Stucke VM; Hofmann F
    Methods Mol Biol; 2013; 986():3-13. PubMed ID: 23436402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.