BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 24055105)

  • 21. Reading speech from still and moving faces: the neural substrates of visible speech.
    Calvert GA; Campbell R
    J Cogn Neurosci; 2003 Jan; 15(1):57-70. PubMed ID: 12590843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Task-modulated activation and functional connectivity of the temporal and frontal areas during speech comprehension.
    Yue Q; Zhang L; Xu G; Shu H; Li P
    Neuroscience; 2013 May; 237():87-95. PubMed ID: 23357111
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Supramodal language comprehension: role of the left temporal lobe for listening and reading.
    Lindenberg R; Scheef L
    Neuropsychologia; 2007 Jun; 45(10):2407-15. PubMed ID: 17451759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Left Superior Temporal Gyrus Is Coupled to Attended Speech in a Cocktail-Party Auditory Scene.
    Vander Ghinst M; Bourguignon M; Op de Beeck M; Wens V; Marty B; Hassid S; Choufani G; Jousmäki V; Hari R; Van Bogaert P; Goldman S; De Tiège X
    J Neurosci; 2016 Feb; 36(5):1596-606. PubMed ID: 26843641
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional asymmetries in the representation of noise-vocoded speech.
    Millman RE; Woods WP; Quinlan PT
    Neuroimage; 2011 Feb; 54(3):2364-73. PubMed ID: 20946961
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of morphosyntactic and verb-argument structure processing: an EfMRI study.
    Raettig T; Frisch S; Friederici AD; Kotz SA
    Cortex; 2010 May; 46(5):613-20. PubMed ID: 19664766
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain oscillations during spoken sentence processing.
    Peña M; Melloni L
    J Cogn Neurosci; 2012 May; 24(5):1149-64. PubMed ID: 21981666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The neural correlate of speech rhythm as evidenced by metrical speech processing.
    Geiser E; Zaehle T; Jancke L; Meyer M
    J Cogn Neurosci; 2008 Mar; 20(3):541-52. PubMed ID: 18004944
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disentangling the brain networks supporting affective speech comprehension.
    Hervé PY; Razafimandimby A; Vigneau M; Mazoyer B; Tzourio-Mazoyer N
    Neuroimage; 2012 Jul; 61(4):1255-67. PubMed ID: 22507230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatiotemporal dynamics of auditory attention synchronize with speech.
    Wöstmann M; Herrmann B; Maess B; Obleser J
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3873-8. PubMed ID: 27001861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Representations of the temporal envelope of sounds in human auditory cortex: can the results from invasive intracortical "depth" electrode recordings be replicated using non-invasive MEG "virtual electrodes"?
    Millman RE; Prendergast G; Hymers M; Green GG
    Neuroimage; 2013 Jan; 64():185-96. PubMed ID: 22989625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced early-latency electromagnetic activity in the left premotor cortex is associated with successful phonetic categorization.
    Alho J; Sato M; Sams M; Schwartz JL; Tiitinen H; Jääskeläinen IP
    Neuroimage; 2012 May; 60(4):1937-46. PubMed ID: 22361165
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Speaker-Listener Neural Coupling Reveals an Adaptive Mechanism for Speech Comprehension in a Noisy Environment.
    Li Z; Li J; Hong B; Nolte G; Engel AK; Zhang D
    Cereb Cortex; 2021 Aug; 31(10):4719-4729. PubMed ID: 33969389
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatial and frequency differences of neuromagnetic activities between the perception of open- and closed-class words.
    Wang Y; Xiang J; Kotecha R; Vannest J; Liu Y; Rose D; Schapiro M; Degrauw T
    Brain Topogr; 2008 Dec; 21(2):75-85. PubMed ID: 18679788
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Differences in Hearing Acuity among "Normal-Hearing" Young Adults Modulate the Neural Basis for Speech Comprehension.
    Lee YS; Wingfield A; Min NE; Kotloff E; Grossman M; Peelle JE
    eNeuro; 2018; 5(3):. PubMed ID: 29911176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neural processing of speech comprehension in noise predicts individual age using fNIRS-based brain-behavior models.
    Liu Y; Wang S; Lu J; Ding J; Chen Y; Yang L; Wang S
    Cereb Cortex; 2024 May; 34(5):. PubMed ID: 38715408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction in the service of comprehension: modulated early brain responses to omitted speech segments.
    Bendixen A; Scharinger M; Strauß A; Obleser J
    Cortex; 2014 Apr; 53():9-26. PubMed ID: 24561233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia.
    Teki S; Barnes GR; Penny WD; Iverson P; Woodhead ZV; Griffiths TD; Leff AP
    Brain; 2013 Jun; 136(Pt 6):1901-12. PubMed ID: 23715097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The neural mechanisms of speech comprehension: fMRI studies of semantic ambiguity.
    Rodd JM; Davis MH; Johnsrude IS
    Cereb Cortex; 2005 Aug; 15(8):1261-9. PubMed ID: 15635062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PET imaging of the normal human auditory system: responses to speech in quiet and in background noise.
    Salvi RJ; Lockwood AH; Frisina RD; Coad ML; Wack DS; Frisina DR
    Hear Res; 2002 Aug; 170(1-2):96-106. PubMed ID: 12208544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.