These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24055225)
1. Effect of methanol concentration on the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Nov; 1314():255-65. PubMed ID: 24055225 [TBL] [Abstract][Full Text] [Related]
2. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
3. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
4. Investigation of the axial heterogeneity of the retention factor of carbamazepine along an supercritical fluid chromatography column. I - Linear conditions. Kamarei F; Gritti F; Guiochon G J Chromatogr A; 2013 Sep; 1306():89-96. PubMed ID: 23910601 [TBL] [Abstract][Full Text] [Related]
5. Use of the isopycnic plots in designing operations of supercritical fluid chromatography. V. Pressure and density drops using mixtures of carbon dioxide and methanol as the mobile phase. Tarafder A; Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2012 Oct; 1258():136-51. PubMed ID: 22935727 [TBL] [Abstract][Full Text] [Related]
6. Pressure, temperature and density drops along supercritical fluid chromatography columns in different thermal environments. III. Mixtures of carbon dioxide and methanol as the mobile phase. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2014 Jan; 1323():143-56. PubMed ID: 24315126 [TBL] [Abstract][Full Text] [Related]
7. Pressure, temperature and density drops along supercritical fluid chromatography columns. I. Experimental results for neat carbon dioxide and columns packed with 3- and 5-micron particles. Poe DP; Veit D; Ranger M; Kaczmarski K; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():105-14. PubMed ID: 22521956 [TBL] [Abstract][Full Text] [Related]
8. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide. Berger TA J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869 [TBL] [Abstract][Full Text] [Related]
9. Pressure, temperature and density drops along supercritical fluid chromatography columns. II. Theoretical simulation for neat carbon dioxide and columns packed with 3-μm particles. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2012 Aug; 1250():115-23. PubMed ID: 22687711 [TBL] [Abstract][Full Text] [Related]
10. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase. Leśko M; Poe DP; Kaczmarski K J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374 [TBL] [Abstract][Full Text] [Related]
11. Use of the isopycnic plots in designing operations of supercritical fluid chromatography: IV. Pressure and density drops along columns. Tarafder A; Kaczmarski K; Ranger M; Poe DP; Guiochon G J Chromatogr A; 2012 May; 1238():132-45. PubMed ID: 22503621 [TBL] [Abstract][Full Text] [Related]
12. Effect of pressure drop on solute retention and column efficiency in supercritical fluid chromatography. Rajendran A; Kräuchi O; Mazzotti M; Morbidelli M J Chromatogr A; 2005 Oct; 1092(1):149-60. PubMed ID: 16188570 [TBL] [Abstract][Full Text] [Related]
13. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica. Berger TA J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062 [TBL] [Abstract][Full Text] [Related]
15. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I--elution of an unretained tracer. Kaczmarski K; Poe DP; Guiochon G J Chromatogr A; 2010 Oct; 1217(42):6578-87. PubMed ID: 20813372 [TBL] [Abstract][Full Text] [Related]
16. Interpretation of dynamic frontal analysis data in solid/supercritical fluid adsorption systems. I: theory. Gritti F; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1290():73-81. PubMed ID: 23582857 [TBL] [Abstract][Full Text] [Related]
17. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
18. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. Lesellier E J Chromatogr A; 2012 Mar; 1228():89-98. PubMed ID: 22192562 [TBL] [Abstract][Full Text] [Related]
19. Effects of column back pressure on supercritical fluid chromatography separations of enantiomers using binary mobile phases on 10 chiral stationary phases. Wang C; Zhang Y J Chromatogr A; 2013 Mar; 1281():127-34. PubMed ID: 23394748 [TBL] [Abstract][Full Text] [Related]
20. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]