These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 24055698)
1. Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin. Abou Taleb MF Int J Biol Macromol; 2013 Nov; 62():341-7. PubMed ID: 24055698 [TBL] [Abstract][Full Text] [Related]
2. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition. Nam K; Watanabe J; Ishihara K Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127 [TBL] [Abstract][Full Text] [Related]
3. Starch-based polymeric carriers for oral-insulin delivery. Mahkam M J Biomed Mater Res A; 2010 Mar; 92(4):1392-7. PubMed ID: 19353572 [TBL] [Abstract][Full Text] [Related]
4. Poly(MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Luo Y; Zhang K; Wei Q; Liu Z; Chen Y Acta Biomater; 2009 Jan; 5(1):316-27. PubMed ID: 18723415 [TBL] [Abstract][Full Text] [Related]
6. Swelling behavior and release properties of pH-sensitive hydrogels based on methacrylic derivatives. Bartil T; Bounekhel M; Cedric C; Jeerome R Acta Pharm; 2007 Sep; 57(3):301-14. PubMed ID: 17878110 [TBL] [Abstract][Full Text] [Related]
7. New terpolymers as hydrogels for oral protein delivery application. Mahkam M J Drug Target; 2009 Jan; 17(1):29-35. PubMed ID: 19016070 [TBL] [Abstract][Full Text] [Related]
8. Development of PEGDMA: MAA based hydrogel microparticles for oral insulin delivery. Kumar A; Lahiri SS; Singh H Int J Pharm; 2006 Oct; 323(1-2):117-24. PubMed ID: 16828246 [TBL] [Abstract][Full Text] [Related]
9. Radiation synthesis of interpolymer polyelectrolyte complex and its application as a carrier for colon-specific drug delivery system. El-Hag Ali Said A Biomaterials; 2005 May; 26(15):2733-9. PubMed ID: 15585277 [TBL] [Abstract][Full Text] [Related]
10. Novel pH-sensitive hydrogels for colon-specific drug delivery. Mahkam M Drug Deliv; 2010 Apr; 17(3):158-63. PubMed ID: 20141506 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of acrylic type hydrogels containing azo derivatives of 5-amino salicylic acid for colon-specific drug delivery. Mahkam M; Doostie L; Siadat SO Inflammopharmacology; 2006 Mar; 14(1-2):72-5. PubMed ID: 16835716 [TBL] [Abstract][Full Text] [Related]
12. In vitro drug release profiles of pH-sensitive hydroxyethylacryl chitosan/sodium alginate hydrogels using paracetamol as a soluble model drug. Treenate P; Monvisade P Int J Biol Macromol; 2017 Jun; 99():71-78. PubMed ID: 28219689 [TBL] [Abstract][Full Text] [Related]
13. Development of smart delivery system for ascorbic acid using pH-responsive P(MAA-co-EGMA) hydrogel microparticles. Lee E; Kim K; Choi M; Lee Y; Park JW; Kim B Drug Deliv; 2010 Nov; 17(8):573-80. PubMed ID: 20626233 [TBL] [Abstract][Full Text] [Related]
14. Magnetic poly(PEGMA-MAA) nanoparticles: photochemical preparation and potential application in drug delivery. Sun HW; Zhang LY; Zhu XJ; Wang XF J Biomater Sci Polym Ed; 2009; 20(12):1675-86. PubMed ID: 19723435 [TBL] [Abstract][Full Text] [Related]
15. pH-Sensitive micelles self-assembled from amphiphilic copolymer brush for delivery of poorly water-soluble drugs. Yang YQ; Zheng LS; Guo XD; Qian Y; Zhang LJ Biomacromolecules; 2011 Jan; 12(1):116-22. PubMed ID: 21121600 [TBL] [Abstract][Full Text] [Related]
16. In vitro evaluation of quaternized polydimethylaminoethylmethacrylate sub-microparticles for oral insulin delivery. Sonia TA; Sharma CP J Biomater Appl; 2013 Jul; 28(1):62-73. PubMed ID: 22718950 [TBL] [Abstract][Full Text] [Related]
17. A novel controlled drug delivery system based on pH-responsive hydrogels included in soft gelatin capsules. Frutos G; Prior-Cabanillas A; ParĂs R; Quijada-Garrido I Acta Biomater; 2010 Dec; 6(12):4650-6. PubMed ID: 20643229 [TBL] [Abstract][Full Text] [Related]
18. Dependence of copolymer composition, swelling history, and drug concentration on the loading of diltiazem hydrochloride (DIL.HCl) into poly[(N-isopropylacrylamide)-co-(methacrylic acid)] hydrogels and its release behaviour from hydrogel slabs. Sousa RG; Prior-Cabanillas A; Quijada-Garrido I; Barrales-Rienda JM J Control Release; 2005 Feb; 102(3):595-606. PubMed ID: 15681082 [TBL] [Abstract][Full Text] [Related]
19. In vitro cytotoxicity and drug release properties of pH- and temperature-sensitive core-shell hydrogel microspheres. Ma L; Liu M; Liu H; Chen J; Cui D Int J Pharm; 2010 Jan; 385(1-2):86-91. PubMed ID: 19879345 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of surfactant-free hydroxypropyl methylcellulose nanogels for controlled release of insulin. Zhao D; Shi X; Liu T; Lu X; Qiu G; Shea KJ Carbohydr Polym; 2016 Oct; 151():1006-1011. PubMed ID: 27474648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]