These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 24055721)
1. Functional characterization of Rho family small GTPases in Fusarium graminearum. Zhang C; Wang Y; Wang J; Zhai Z; Zhang L; Zheng W; Zheng W; Yu W; Zhou J; Lu G; Shim WB; Wang Z Fungal Genet Biol; 2013 Dec; 61():90-9. PubMed ID: 24055721 [TBL] [Abstract][Full Text] [Related]
2. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum. Hu S; Zhou X; Gu X; Cao S; Wang C; Xu JR Mol Plant Microbe Interact; 2014 Jun; 27(6):557-66. PubMed ID: 24450772 [TBL] [Abstract][Full Text] [Related]
3. The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Li Y; Wang C; Liu W; Wang G; Kang Z; Kistler HC; Xu JR Mol Plant Microbe Interact; 2011 Apr; 24(4):487-96. PubMed ID: 21138346 [TBL] [Abstract][Full Text] [Related]
4. FgNoxR, a regulatory subunit of NADPH oxidases, is required for female fertility and pathogenicity in Fusarium graminearum. Zhang C; Lin Y; Wang J; Wang Y; Chen M; Norvienyeku J; Li G; Yu W; Wang Z FEMS Microbiol Lett; 2016 Jan; 363(1):fnv223. PubMed ID: 26607286 [TBL] [Abstract][Full Text] [Related]
5. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Hou Z; Xue C; Peng Y; Katan T; Kistler HC; Xu JR Mol Plant Microbe Interact; 2002 Nov; 15(11):1119-27. PubMed ID: 12423017 [TBL] [Abstract][Full Text] [Related]
6. FgBud3, a Rho4-Interacting Guanine Nucleotide Exchange Factor, Is Involved in Polarity Growth, Cell Division and Pathogenicity of Zhang C; Luo Z; He D; Su L; Yin H; Wang G; Liu H; Rensing C; Wang Z Front Microbiol; 2018; 9():1209. PubMed ID: 29930543 [TBL] [Abstract][Full Text] [Related]
7. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Qin J; Wu M; Zhou S Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616 [TBL] [Abstract][Full Text] [Related]
8. The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Zhou X; Heyer C; Choi YE; Mehrabi R; Xu JR Fungal Genet Biol; 2010 Feb; 47(2):143-51. PubMed ID: 19909822 [TBL] [Abstract][Full Text] [Related]
9. The phospholipase C (FgPLC1) is involved in regulation of development, pathogenicity, and stress responses in Fusarium graminearum. Zhu Q; Sun L; Lian J; Gao X; Zhao L; Ding M; Li J; Liang Y Fungal Genet Biol; 2016 Dec; 97():1-9. PubMed ID: 27777035 [TBL] [Abstract][Full Text] [Related]
10. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Wang C; Wang Y; Zhang L; Yin Z; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452023 [TBL] [Abstract][Full Text] [Related]
11. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
12. Rab GTPases are essential for membrane trafficking-dependent growth and pathogenicity in Fusarium graminearum. Zheng H; Zheng W; Wu C; Yang J; Xi Y; Xie Q; Zhao X; Deng X; Lu G; Li G; Ebbole D; Zhou J; Wang Z Environ Microbiol; 2015 Nov; 17(11):4580-99. PubMed ID: 26177389 [TBL] [Abstract][Full Text] [Related]
13. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. Van Nguyen T; Kröger C; Bönnighausen J; Schäfer W; Bormann J Mol Plant Microbe Interact; 2013 Dec; 26(12):1378-94. PubMed ID: 23945004 [TBL] [Abstract][Full Text] [Related]
14. Genome-Wide Characterization of PX Domain-Containing Proteins Involved in Membrane Trafficking-Dependent Growth and Pathogenicity of Fusarium graminearum. Lou Y; Zhang J; Wang G; Fang W; Wang S; Abubakar YS; Zhou J; Wang Z; Zheng W mBio; 2021 Dec; 12(6):e0232421. PubMed ID: 34933449 [TBL] [Abstract][Full Text] [Related]
15. EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Zhao C; Waalwijk C; de Wit PJ; van der Lee T; Tang D Mol Plant Microbe Interact; 2011 Dec; 24(12):1407-18. PubMed ID: 21830952 [TBL] [Abstract][Full Text] [Related]
16. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Zhang Y; Choi YE; Zou X; Xu JR Fungal Genet Biol; 2011 Feb; 48(2):71-9. PubMed ID: 20887797 [TBL] [Abstract][Full Text] [Related]
17. Involvement of the anucleate primary sterigmata protein FgApsB in vegetative differentiation, asexual development, nuclear migration, and virulence in Fusarium graminearum. Zheng Z; Gao T; Hou Y; Zhou M FEMS Microbiol Lett; 2013 Dec; 349(2):88-98. PubMed ID: 24117691 [TBL] [Abstract][Full Text] [Related]
18. Q-SNARE protein FgSyn8 plays important role in growth, DON production and pathogenicity of Fusarium graminearum. Adnan M; Islam W; Noman A; Hussain A; Anwar M; Khan MU; Akram W; Ashraf MF; Raza MF Microb Pathog; 2020 Mar; 140():103948. PubMed ID: 31874229 [TBL] [Abstract][Full Text] [Related]
19. Stage-specific functional relationships between Tub1 and Tub2 beta-tubulins in the wheat scab fungus Fusarium graminearum. Wang H; Chen D; Li C; Tian N; Zhang J; Xu JR; Wang C Fungal Genet Biol; 2019 Nov; 132():103251. PubMed ID: 31319136 [TBL] [Abstract][Full Text] [Related]
20. Type II myosin gene in Fusarium graminearum is required for septation, development, mycotoxin biosynthesis and pathogenicity. Song B; Li HP; Zhang JB; Wang JH; Gong AD; Song XS; Chen T; Liao YC Fungal Genet Biol; 2013 May; 54():60-70. PubMed ID: 23507542 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]