These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 24055726)
1. MicroRNA expression analysis of rosette and folding leaves in Chinese cabbage using high-throughput Solexa sequencing. Wang F; Li H; Zhang Y; Li J; Li L; Liu L; Wang L; Wang C; Gao J Gene; 2013 Dec; 532(2):222-9. PubMed ID: 24055726 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis of rosette and folding leaves in Chinese cabbage using high-throughput RNA sequencing. Wang F; Li L; Li H; Liu L; Zhang Y; Gao J; Wang X Genomics; 2012 May; 99(5):299-307. PubMed ID: 22387604 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide identification of turnip mosaic virus-responsive microRNAs in non-heading Chinese cabbage by high-throughput sequencing. Wang Z; Jiang D; Zhang C; Tan H; Li Y; Lv S; Hou X; Cui X Gene; 2015 Oct; 571(2):178-87. PubMed ID: 26115771 [TBL] [Abstract][Full Text] [Related]
4. High-throughput sequencing discovery of conserved and novel microRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Wang F; Li L; Liu L; Li H; Zhang Y; Yao Y; Ni Z; Gao J Mol Genet Genomics; 2012 Jul; 287(7):555-63. PubMed ID: 22643909 [TBL] [Abstract][Full Text] [Related]
5. BrpSPL9 (Brassica rapa ssp. pekinensis SPL9) controls the earliness of heading time in Chinese cabbage. Wang Y; Wu F; Bai J; He Y Plant Biotechnol J; 2014 Apr; 12(3):312-21. PubMed ID: 24237584 [TBL] [Abstract][Full Text] [Related]
6. High-throughput sequence analysis of small RNAs in skotomorphogenic seedlings of Brassica rapa ssp. rapa. Zhou B; Fan P; Li Y Gene; 2014 Sep; 548(1):68-74. PubMed ID: 25016069 [TBL] [Abstract][Full Text] [Related]
7. Identification and expression profiling of Vigna mungo microRNAs from leaf small RNA transcriptome by deep sequencing. Paul S; Kundu A; Pal A J Integr Plant Biol; 2014 Jan; 56(1):15-23. PubMed ID: 24138283 [TBL] [Abstract][Full Text] [Related]
8. Identification of Taxus microRNAs and their targets with high-throughput sequencing and degradome analysis. Hao DC; Yang L; Xiao PG; Liu M Physiol Plant; 2012 Dec; 146(4):388-403. PubMed ID: 22708792 [TBL] [Abstract][Full Text] [Related]
9. Identification of conserved microRNAs and their targets in Chinese cabbage (Brassica rapa subsp. pekinensis). Wang J; Hou X; Yang X Genome; 2011 Dec; 54(12):1029-40. PubMed ID: 22111519 [TBL] [Abstract][Full Text] [Related]
10. Changes in endogenous phytohormones regulated by microRNA-target mRNAs contribute to the development of Dwarf Autotetraploid Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Wang Y; Huang S; Liu Z; Tang X; Feng H Mol Genet Genomics; 2018 Dec; 293(6):1535-1546. PubMed ID: 30116946 [TBL] [Abstract][Full Text] [Related]
11. Identification of conserved and novel miRNAs responsive to heat stress in flowering Chinese cabbage using high-throughput sequencing. Ahmed W; Xia Y; Zhang H; Li R; Bai G; Siddique KHM; Guo P Sci Rep; 2019 Oct; 9(1):14922. PubMed ID: 31624298 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome Analysis in Chinese Cabbage (Brassica rapa ssp. pekinensis) Provides the Role of Glucosinolate Metabolism in Response to Drought Stress. Eom SH; Baek SA; Kim JK; Hyun TK Molecules; 2018 May; 23(5):. PubMed ID: 29762546 [TBL] [Abstract][Full Text] [Related]
13. MicroRNA319a-targeted Brassica rapa ssp. pekinensis TCP genes modulate head shape in chinese cabbage by differential cell division arrest in leaf regions. Mao Y; Wu F; Yu X; Bai J; Zhong W; He Y Plant Physiol; 2014 Feb; 164(2):710-20. PubMed ID: 24351684 [TBL] [Abstract][Full Text] [Related]
14. Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. Yu X; Wang H; Lu Y; de Ruiter M; Cariaso M; Prins M; van Tunen A; He Y J Exp Bot; 2012 Jan; 63(2):1025-38. PubMed ID: 22025521 [TBL] [Abstract][Full Text] [Related]
15. High-throughput deep sequencing shows that microRNAs play important roles in switchgrass responses to drought and salinity stress. Xie F; Stewart CN; Taki FA; He Q; Liu H; Zhang B Plant Biotechnol J; 2014 Apr; 12(3):354-66. PubMed ID: 24283289 [TBL] [Abstract][Full Text] [Related]
16. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing. Luo Y; Zhang X; Luo Z; Zhang Q; Liu J BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351 [TBL] [Abstract][Full Text] [Related]
17. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. Zeng X; Xu Y; Jiang J; Zhang F; Ma L; Wu D; Wang Y; Sun W BMC Plant Biol; 2018 Mar; 18(1):52. PubMed ID: 29587648 [TBL] [Abstract][Full Text] [Related]
18. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Yu H; Cong L; Zhu Z; Wang C; Zou J; Tao C; Shi Z; Lu X Gene; 2015 Oct; 571(2):221-30. PubMed ID: 26117170 [TBL] [Abstract][Full Text] [Related]
19. BcpLH organizes a specific subset of microRNAs to form a leafy head in Chinese cabbage ( Ren W; Wu F; Bai J; Li X; Yang X; Xue W; Liu H; He Y Hortic Res; 2020; 7():1. PubMed ID: 31908804 [No Abstract] [Full Text] [Related]
20. Identification and Characterization of MicroRNAs in Ginkgo biloba var. epiphylla Mak. Zhang Q; Li J; Sang Y; Xing S; Wu Q; Liu X PLoS One; 2015; 10(5):e0127184. PubMed ID: 25978425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]