These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

525 related articles for article (PubMed ID: 24055761)

  • 41. From fragments to the whole: a comparison between cochlear implant users and normal-hearing listeners in music perception and enjoyment.
    Alexander AJ; Bartel L; Friesen L; Shipp D; Chen J
    J Otolaryngol Head Neck Surg; 2011 Feb; 40(1):1-7. PubMed ID: 21303594
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Piano training enhances the neural processing of pitch and improves speech perception in Mandarin-speaking children.
    Nan Y; Liu L; Geiser E; Shu H; Gong CC; Dong Q; Gabrieli JDE; Desimone R
    Proc Natl Acad Sci U S A; 2018 Jul; 115(28):E6630-E6639. PubMed ID: 29941577
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Musical training improves the ability to understand speech-in-noise in older adults.
    Zendel BR; West GL; Belleville S; Peretz I
    Neurobiol Aging; 2019 Sep; 81():102-115. PubMed ID: 31280114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Brain organization for music processing.
    Peretz I; Zatorre RJ
    Annu Rev Psychol; 2005; 56():89-114. PubMed ID: 15709930
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of cochlear implantation on music perception by adults with usable pre-operative acoustic hearing.
    Looi V; McDermott H; McKay C; Hickson L
    Int J Audiol; 2008 May; 47(5):257-68. PubMed ID: 18465410
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interaction between bottom-up and top-down effects during the processing of pitch intervals in sequences of spoken and sung syllables.
    Angenstein N; Scheich H; Brechmann A
    Neuroimage; 2012 Jul; 61(3):715-22. PubMed ID: 22503936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Auditory perceptual learning and changes in the conceptualization of auditory cortex.
    Irvine DRF
    Hear Res; 2018 Sep; 366():3-16. PubMed ID: 29551308
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Music training and inhibitory control: a multidimensional model.
    Moreno S; Farzan F
    Ann N Y Acad Sci; 2015 Mar; 1337():147-52. PubMed ID: 25773629
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Musical training as a framework for brain plasticity: behavior, function, and structure.
    Herholz SC; Zatorre RJ
    Neuron; 2012 Nov; 76(3):486-502. PubMed ID: 23141061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurophysiological evidence of impaired musical sound perception in cochlear-implant users.
    Sandmann P; Kegel A; Eichele T; Dillier N; Lai W; Bendixen A; Debener S; Jancke L; Meyer M
    Clin Neurophysiol; 2010 Dec; 121(12):2070-82. PubMed ID: 20570555
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional benefits of sequential bilateral cochlear implantation in children with long inter-stage interval between two implants.
    Kim JS; Kim LS; Jeong SW
    Int J Pediatr Otorhinolaryngol; 2013 Feb; 77(2):162-9. PubMed ID: 23137855
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A comparison of the speech recognition and pitch ranking abilities of children using a unilateral cochlear implant, bimodal stimulation or bilateral hearing aids.
    Looi V; Radford CJ
    Int J Pediatr Otorhinolaryngol; 2011 Apr; 75(4):472-82. PubMed ID: 21300411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Musical melody and speech intonation: singing a different tune.
    Zatorre RJ; Baum SR
    PLoS Biol; 2012; 10(7):e1001372. PubMed ID: 22859909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The separation between music and speech: evidence from the perception of Cantonese tones.
    Mok PK; Zuo D
    J Acoust Soc Am; 2012 Oct; 132(4):2711-20. PubMed ID: 23039463
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Musicians detect pitch violation in a foreign language better than nonmusicians: behavioral and electrophysiological evidence.
    Marques C; Moreno S; Castro SL; Besson M
    J Cogn Neurosci; 2007 Sep; 19(9):1453-63. PubMed ID: 17714007
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experience-induced malleability in neural encoding of pitch, timbre, and timing.
    Kraus N; Skoe E; Parbery-Clark A; Ashley R
    Ann N Y Acad Sci; 2009 Jul; 1169():543-57. PubMed ID: 19673837
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparison of musical activities of cochlear implant users with different speech-coding strategies.
    Brockmeier SJ; Grasmeder M; Passow S; Mawmann D; Vischer M; Jappel A; Baumgartner W; Stark T; Müller J; Brill S; Steffens T; Strutz J; Kiefer J; Baumann U; Arnold W
    Ear Hear; 2007 Apr; 28(2 Suppl):49S-51S. PubMed ID: 17496646
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Prosody perception and musical pitch discrimination in adults using cochlear implants.
    Kalathottukaren RT; Purdy SC; Ballard E
    Int J Audiol; 2015 Jul; 54(7):444-52. PubMed ID: 25634773
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.