These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
382 related articles for article (PubMed ID: 24055848)
1. A novel sample preparation and on-line HPLC-DAD-MS/MS-BCD analysis for rapid screening and characterization of specific enzyme inhibitors in herbal extracts: case study of α-glucosidase. Li DQ; Zhao J; Xie J; Li SP J Pharm Biomed Anal; 2014 Jan; 88():130-5. PubMed ID: 24055848 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of three selected beverage extracts on alpha-glucosidase and rapid identification of their active compounds using HPLC-DAD-MS/MS and biochemical detection. Li DQ; Qian ZM; Li SP J Agric Food Chem; 2010 Jun; 58(11):6608-13. PubMed ID: 20443596 [TBL] [Abstract][Full Text] [Related]
3. Screening and determination for potential α-glucosidase inhibitors from leaves of Acanthopanax senticosus harms by using UF-LC/MS and ESI-MS(n). Zhou H; Xing J; Liu S; Song F; Cai Z; Pi Z; Liu Z; Liu S Phytochem Anal; 2012; 23(4):315-23. PubMed ID: 21953783 [TBL] [Abstract][Full Text] [Related]
4. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. Trinh BTD; Staerk D; Jäger AK J Ethnopharmacol; 2016 Jun; 186():189-195. PubMed ID: 27041401 [TBL] [Abstract][Full Text] [Related]
5. Multiple in vitro biological effects of phenolic compounds from Terminalia chebula var. tomentella. Zhang XR; Qiao YJ; Zhu HT; Kong QH; Wang D; Yang CR; Zhang YJ J Ethnopharmacol; 2021 Jul; 275():114135. PubMed ID: 33892063 [TBL] [Abstract][Full Text] [Related]
6. New phenolics from the flowers of Punica granatum and their in vitro α-glucosidase inhibitory activities. Yuan T; Wan C; Ma H; Seeram NP Planta Med; 2013 Nov; 79(17):1674-9. PubMed ID: 24108434 [TBL] [Abstract][Full Text] [Related]
7. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Tao Y; Zhang Y; Cheng Y; Wang Y Biomed Chromatogr; 2013 Feb; 27(2):148-55. PubMed ID: 22674728 [TBL] [Abstract][Full Text] [Related]
8. Characterization of phenolics and discovery of α-glucosidase inhibitors in Artemisia argyi leaves based on ultra-performance liquid chromatography-tandem mass spectrometry and relevance analysis. Chang Y; Fan W; Shi H; Feng X; Zhang D; Wang L; Zheng Y; Guo L J Pharm Biomed Anal; 2022 Oct; 220():114982. PubMed ID: 35944337 [TBL] [Abstract][Full Text] [Related]
9. Antidiabetic components of Cassia alata leaves: identification through α-glucosidase inhibition studies. Varghese GK; Bose LV; Habtemariam S Pharm Biol; 2013 Mar; 51(3):345-9. PubMed ID: 23137344 [TBL] [Abstract][Full Text] [Related]
10. α-Glucosidase inhibition, 15-lipoxygenase inhibition, and brine shrimp toxicity of extracts and isolated compounds from Terminalia macroptera leaves. Pham AT; Malterud KE; Paulsen BS; Diallo D; Wangensteen H Pharm Biol; 2014 Sep; 52(9):1166-9. PubMed ID: 24635511 [TBL] [Abstract][Full Text] [Related]
11. A LC/QTOF-MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers. Gu D; Yang Y; Bakri M; Chen Q; Xin X; Aisa HA Phytochem Anal; 2013; 24(6):661-70. PubMed ID: 23813906 [TBL] [Abstract][Full Text] [Related]
12. Hydrolyzable tannins from the fruits of Terminalia chebula Retz and their α-glucosidase inhibitory activities. Lee DY; Kim HW; Yang H; Sung SH Phytochemistry; 2017 May; 137():109-116. PubMed ID: 28213992 [TBL] [Abstract][Full Text] [Related]
13. Phenolic antioxidants (hydrolyzable tannins, flavonols, and anthocyanins) identified by LC-ESI-MS and MALDI-QIT-TOF MS from Rosa chinensis flowers. Cai YZ; Xing J; Sun M; Zhan ZQ; Corke H J Agric Food Chem; 2005 Dec; 53(26):9940-8. PubMed ID: 16366678 [TBL] [Abstract][Full Text] [Related]
14. A comparative study on the inhibitory effects of different parts and chemical constituents of pomegranate on α-amylase and α-glucosidase. Kam A; Li KM; Razmovski-Naumovski V; Nammi S; Shi J; Chan K; Li GQ Phytother Res; 2013 Nov; 27(11):1614-20. PubMed ID: 23280757 [TBL] [Abstract][Full Text] [Related]
15. Phytochemical analysis of Rosa hybrida cv. 'Jardin de Granville' by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: polyphenolic fingerprints of six plant organs. Riffault L; Destandau E; Pasquier L; André P; Elfakir C Phytochemistry; 2014 Mar; 99():127-34. PubMed ID: 24461781 [TBL] [Abstract][Full Text] [Related]
16. A new flavone glucoside together with known ellagitannins and flavones with anti-diabetic and anti-obesity activities from the flowers of pomegranate (Punica granatum). Wu S; Tian L Nat Prod Res; 2019 Jan; 33(2):252-257. PubMed ID: 29502447 [TBL] [Abstract][Full Text] [Related]
17. Simultaneous determination and characterization of tannins and triterpene saponins from the fruits of various species of Terminalia and Phyllantus emblica using a UHPLC-UV-MS method: application to triphala. Avula B; Wang YH; Wang M; Shen YH; Khan IA Planta Med; 2013 Jan; 79(2):181-8. PubMed ID: 23299756 [TBL] [Abstract][Full Text] [Related]
18. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions. Bellesia A; Verzelloni E; Tagliazucchi D Int J Food Sci Nutr; 2015 Feb; 66(1):85-92. PubMed ID: 25519249 [TBL] [Abstract][Full Text] [Related]
19. Development of a method to screen and isolate potential α-glucosidase inhibitors from Panax japonicus C.A. Meyer by ultrafiltration, liquid chromatography, and counter-current chromatography. Li S; Tang Y; Liu C; Zhang Y J Sep Sci; 2015 Jun; 38(12):2014-23. PubMed ID: 25847676 [TBL] [Abstract][Full Text] [Related]
20. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MS Ambigaipalan P; de Camargo AC; Shahidi F Food Chem; 2017 Apr; 221():1883-1894. PubMed ID: 27979177 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]