BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 24055866)

  • 61. Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.
    Crippa S; Nemir M; Ounzain S; Ibberson M; Berthonneche C; Sarre A; Boisset G; Maison D; Harshman K; Xenarios I; Diviani D; Schorderet D; Pedrazzini T
    Cardiovasc Res; 2016 May; 110(1):73-84. PubMed ID: 26857418
    [TBL] [Abstract][Full Text] [Related]  

  • 62. miRNAs in newt lens regeneration: specific control of proliferation and evidence for miRNA networking.
    Nakamura K; Maki N; Trinh A; Trask HW; Gui J; Tomlinson CR; Tsonis PA
    PLoS One; 2010 Aug; 5(8):e12058. PubMed ID: 20711456
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The promise of enhancer-associated long noncoding RNAs in cardiac regeneration.
    Ounzain S; Pedrazzini T
    Trends Cardiovasc Med; 2015 Oct; 25(7):592-602. PubMed ID: 25753179
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Regulation of zebrafish heart regeneration by miR-133.
    Yin VP; Lepilina A; Smith A; Poss KD
    Dev Biol; 2012 May; 365(2):319-27. PubMed ID: 22374218
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Expression pattern of a newt Notch homologue in regenerating newt retina.
    Kaneko Y; Hirota K; Matsumoto G; Hanyu Y
    Brain Res Dev Brain Res; 2001 May; 128(1):53-62. PubMed ID: 11356262
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Islet1 is a direct transcriptional target of the homeodomain transcription factor Shox2 and rescues the Shox2-mediated bradycardia.
    Hoffmann S; Berger IM; Glaser A; Bacon C; Li L; Gretz N; Steinbeisser H; Rottbauer W; Just S; Rappold G
    Basic Res Cardiol; 2013 Mar; 108(2):339. PubMed ID: 23455426
    [TBL] [Abstract][Full Text] [Related]  

  • 67. MicroRNA profiling of atrial fibrillation in canines: miR-206 modulates intrinsic cardiac autonomic nerve remodeling by regulating SOD1.
    Zhang Y; Zheng S; Geng Y; Xue J; Wang Z; Xie X; Wang J; Zhang S; Hou Y
    PLoS One; 2015; 10(3):e0122674. PubMed ID: 25816284
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The role of cardiac fibroblasts in extracellular matrix-mediated signaling during normal and pathological cardiac development.
    Sullivan KE; Black LD
    J Biomech Eng; 2013 Jul; 135(7):71001. PubMed ID: 23720014
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Production of Cardiomyocytes by microRNA-Mediated Reprogramming in Optimized Reprogramming Media.
    Wang X; Hodgkinson CP; Dzau VJ
    Methods Mol Biol; 2021; 2239():47-59. PubMed ID: 33226612
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Human neonatal cardiovascular progenitors: unlocking the secret to regenerative ability.
    Fuentes TI; Appleby N; Tsay E; Martinez JJ; Bailey L; Hasaniya N; Kearns-Jonker M
    PLoS One; 2013; 8(10):e77464. PubMed ID: 24204836
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Silencing of TERT decreases levels of miR-1, miR-21, miR-29a and miR-208a in cardiomyocytes.
    Drevytska TI; Nagibin VS; Gurianova VL; Kedlyan VR; Moibenko AA; Dosenko VE
    Cell Biochem Funct; 2014 Oct; 32(7):565-70. PubMed ID: 25156787
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nrg1 is an injury-induced cardiomyocyte mitogen for the endogenous heart regeneration program in zebrafish.
    Gemberling M; Karra R; Dickson AL; Poss KD
    Elife; 2015 Apr; 4():. PubMed ID: 25830562
    [TBL] [Abstract][Full Text] [Related]  

  • 73. miRNA-1: functional roles and dysregulation in heart disease.
    Duan L; Xiong X; Liu Y; Wang J
    Mol Biosyst; 2014 Nov; 10(11):2775-82. PubMed ID: 25177824
    [TBL] [Abstract][Full Text] [Related]  

  • 74. MiR-29a is an enhancer of mineral deposition in bone-derived systems.
    Roberto VP; Tiago DM; Silva IA; Cancela ML
    Arch Biochem Biophys; 2014 Dec; 564():173-83. PubMed ID: 25241053
    [TBL] [Abstract][Full Text] [Related]  

  • 75. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes.
    Porrello ER; Johnson BA; Aurora AB; Simpson E; Nam YJ; Matkovich SJ; Dorn GW; van Rooij E; Olson EN
    Circ Res; 2011 Sep; 109(6):670-9. PubMed ID: 21778430
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Delineating the Dynamic Transcriptome Response of mRNA and microRNA during Zebrafish Heart Regeneration.
    Klett H; Jürgensen L; Most P; Busch M; Günther F; Dobreva G; Leuschner F; Hassel D; Busch H; Boerries M
    Biomolecules; 2018 Dec; 9(1):. PubMed ID: 30597924
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A newt type II keratin restricted to normal and regenerating limbs and tails is responsive to retinoic acid.
    Ferretti P; Brockes JP; Brown R
    Development; 1991 Feb; 111(2):497-507. PubMed ID: 1716554
    [TBL] [Abstract][Full Text] [Related]  

  • 78. MicroRNAs in cardiovascular disease.
    Gurha P
    Curr Opin Cardiol; 2016 May; 31(3):249-54. PubMed ID: 26885771
    [TBL] [Abstract][Full Text] [Related]  

  • 79. MiR-431 promotes cardiomyocyte proliferation by targeting FBXO32 expression.
    Li M; Zhang C; Tan L; Liu T; Zhu T; Wei X; Liu J; Si X; Li B
    J Gene Med; 2024 Jan; 26(1):e3656. PubMed ID: 38282147
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Spatio-temporal expression patterns of microRNAs in remodelling and repair of the infarcted heart.
    Chiarella-Redfern HH; Rayner KJ; Suuronen EJ
    Histol Histopathol; 2015 Feb; 30(2):141-9. PubMed ID: 25184277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.