These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 24055996)

  • 1. Electrochemical impedance spectroscopy as a method for electrical characterization of the bilayers formed from lipid-amino acid systems.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Chem Phys Lipids; 2013; 175-176():116-22. PubMed ID: 24055996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance analysis of complex formation equilibria in phosphatidylcholine bilayers containing decanoic acid or decylamine.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Cell Biochem Biophys; 2011 Sep; 61(1):145-55. PubMed ID: 21340532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance analysis of phosphatidylcholine/alpha-tocopherol system in bilayer lipid membranes.
    Naumowicz M; Figaszewski ZA
    J Membr Biol; 2005 May; 205(1):29-36. PubMed ID: 16245040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance analysis of lipid domains in phosphatidylcholine bilayer membranes containing ergosterol.
    Naumowicz M; Figaszewski ZA
    Biophys J; 2005 Nov; 89(5):3174-82. PubMed ID: 16126831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physicochemical analysis of phosphatidylcholine-ceramide system in bilayer lipid membranes.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Acta Biochim Pol; 2008; 55(4):721-30. PubMed ID: 19081852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High impedance droplet-solid interface lipid bilayer membranes.
    Wang X; Ma S; Su Y; Zhang Y; Bi H; Zhang L; Han X
    Anal Chem; 2015 Feb; 87(4):2094-9. PubMed ID: 25600185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impedance analysis of phosphatidylcholine membranes modified with valinomycin.
    Naumowicz M; Kotynska J; Petelska A; Figaszewski Z
    Eur Biophys J; 2006 Feb; 35(3):239-46. PubMed ID: 16283290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capacitance and resistance of the bilayer lipid membrane formed of phosphatidylcholine and cholesterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Cell Mol Biol Lett; 2003; 8(1):5-18. PubMed ID: 12655351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lipid Bilayer Membrane in a Silicon Based Micron Sized Cavity Accessed by Atomic Force Microscopy and Electrochemical Impedance Spectroscopy.
    Khan MS; Dosoky NS; Patel D; Weimer J; Williams JD
    Biosensors (Basel); 2017 Jul; 7(3):. PubMed ID: 28678160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resonance-mode electrochemical impedance measurements of silicon dioxide supported lipid bilayer formation and ion channel mediated charge transport.
    Lundgren A; Hedlund J; Andersson O; Brändén M; Kunze A; Elwing H; Höök F
    Anal Chem; 2011 Oct; 83(20):7800-6. PubMed ID: 21877702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of hybrid bilayer membranes on silver electrodes as biocompatible SERS substrates to study membrane-protein interactions.
    Millo D; Bonifacio A; Moncelli MR; Sergo V; Gooijer C; van der Zwan G
    Colloids Surf B Biointerfaces; 2010 Nov; 81(1):212-6. PubMed ID: 20674293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance analysis of phosphatidylcholine membranes modified with gramicidin D.
    Naumowicz M; Figaszewski Z
    Bioelectrochemistry; 2003 Oct; 61(1-2):21-7. PubMed ID: 14642906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles.
    Liu Y; Mark Worden R
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):67-75. PubMed ID: 25285435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing of pathogenic bacteria based on their interaction with supported bilayer membranes studied by impedance spectroscopy and surface plasmon resonance.
    Tun TN; Cameron PJ; Jenkins AT
    Biosens Bioelectron; 2011 Oct; 28(1):227-31. PubMed ID: 21835605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronopotentiometric studies of phosphatidylcholine bilayers modified by ergosterol.
    Naumowicz M; Petelska AD; Figaszewski ZA
    Steroids; 2011; 76(10-11):967-73. PubMed ID: 21641920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tethered bilayer lipid membrane that mimics microbial membranes.
    Andersson J; Fuller MA; Wood K; Holt SA; Köper I
    Phys Chem Chem Phys; 2018 May; 20(18):12958-12969. PubMed ID: 29701745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems.
    Petelska AD; Naumowicz M; Figaszewski ZA
    Cell Biochem Biophys; 2006; 44(2):205-11. PubMed ID: 16456222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of pH on the electrical capacitance of phosphatidylcholine-phosphatidylserine system in bilayer lipid membrane.
    Naumowicz M; Figaszewski ZA
    J Membr Biol; 2014 Apr; 247(4):361-9. PubMed ID: 24577415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.