BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 24056144)

  • 1. Paclitaxel-loaded polymeric microparticles: quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics.
    Tsai M; Lu Z; Wientjes MG; Au JL
    J Control Release; 2013 Dec; 172(3):737-44. PubMed ID: 24056144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo correlation of paclitaxel-loaded polymeric microparticles.
    Park K
    J Control Release; 2013 Dec; 172(3):1162. PubMed ID: 24315459
    [No Abstract]   [Full Text] [Related]  

  • 3. Delivery of doxorubicin and paclitaxel from double-layered microparticles: The effects of layer thickness and dual-drug vs. single-drug loading.
    Lee WL; Guo WM; Ho VHB; Saha A; Chong HC; Tan NS; Tan EY; Loo SCJ
    Acta Biomater; 2015 Nov; 27():53-65. PubMed ID: 26340886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microparticles produced by the hydrogel template method for sustained drug delivery.
    Lu Y; Sturek M; Park K
    Int J Pharm; 2014 Jan; 461(1-2):258-69. PubMed ID: 24333903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The characterization of paclitaxel-loaded microspheres manufactured from blends of poly(lactic-co-glycolic acid) (PLGA) and low molecular weight diblock copolymers.
    Jackson JK; Hung T; Letchford K; Burt HM
    Int J Pharm; 2007 Sep; 342(1-2):6-17. PubMed ID: 17555895
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paclitaxel-loaded poly(D,L-lactide-co-glycolide) nanoparticles for radiotherapy in hypoxic human tumor cells in vitro.
    Jin C; Bai L; Wu H; Liu J; Guo G; Chen J
    Cancer Biol Ther; 2008 Jun; 7(6):911-6. PubMed ID: 18367873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carrier on disposition and antitumor activity of intraperitoneal Paclitaxel.
    Tsai M; Lu Z; Wang J; Yeh TK; Wientjes MG; Au JL
    Pharm Res; 2007 Sep; 24(9):1691-701. PubMed ID: 17447121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy.
    Kim SC; Kim DW; Shim YH; Bang JS; Oh HS; Wan Kim S; Seo MH
    J Control Release; 2001 May; 72(1-3):191-202. PubMed ID: 11389998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Versatility of Particulate Carriers: Development of Pharmacodynamically Optimized Drug-Loaded Microparticles for Treatment of Peritoneal Cancer.
    Au JL; Lu Z; Wientjes MG
    AAPS J; 2015 Sep; 17(5):1065-79. PubMed ID: 26089090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anti-melanoma efficiency of the intratumoral injection of cucurbitacin-loaded sustained-release carriers: a PLGA particle system.
    Jianbo G; Xue L; Hongdan Y; Zhaohui T; Xing T; Chenchen C; Jinghua X; Hui X
    J Pharm Sci; 2013 Aug; 102(8):2550-63. PubMed ID: 23729371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a novel morphological paclitaxel-loaded PLGA microspheres for effective cancer therapy: in vitro and in vivo evaluations.
    Zhang Z; Wang X; Li B; Hou Y; Yang J; Yi L
    Drug Deliv; 2018 Nov; 25(1):166-177. PubMed ID: 29299936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation.
    Wang J; Ng CW; Win KY; Shoemakers P; Lee TK; Feng SS; Wang CH
    J Microencapsul; 2003; 20(3):317-27. PubMed ID: 12881113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paclitaxel-loaded microparticles for intratumoral administration via the TMT technique: preparation, characterization, and preliminary antitumoral evaluation.
    Hamoudeh M; Diab R; Fessi H; Dumontet C; Cuchet D
    Drug Dev Ind Pharm; 2008 Jul; 34(7):698-707. PubMed ID: 18612910
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS.
    Mu L; Feng SS
    J Control Release; 2003 Jan; 86(1):33-48. PubMed ID: 12490371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paclitaxel-loaded and A10-3.2 aptamer-targeted poly(lactide-
    Wu M; Wang Y; Wang Y; Zhang M; Luo Y; Tang J; Wang Z; Wang D; Hao L; Wang Z
    Int J Nanomedicine; 2017; 12():5313-5330. PubMed ID: 28794625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity of drug-loaded tumor-penetrating microparticles in peritoneal pancreatic tumors.
    Lu Z; Tsai M; Wang J; Cole DJ; Wientjes MG; Au JL
    Curr Cancer Drug Targets; 2014; 14(1):70-8. PubMed ID: 24200079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell membrane-camouflaged poly(lactic-co-glycolic acid) microparticles as a potential controlled release drug delivery system for local stellate ganglion microinjection.
    Liu B; Zhang D; Tu H; Alimi OA; Kong Y; Satyanarayana R; Kuss M; Li Y; Duan B
    Acta Biomater; 2023 Apr; 161():201-212. PubMed ID: 36858164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The intracellular uptake of CD95 modified paclitaxel-loaded poly(lactic-co-glycolic acid) microparticles.
    Ateh DD; Leinster VH; Lambert SR; Shah A; Khan A; Walklin HJ; Johnstone JV; Ibrahim NI; Kadam MM; Malik Z; Gironès M; Veldhuis GJ; Warnes G; Marino S; McNeish IA; Martin JE
    Biomaterials; 2011 Nov; 32(33):8538-47. PubMed ID: 21824652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model.
    Amoozgar Z; Wang L; Brandstoetter T; Wallis SS; Wilson EM; Goldberg MS
    Biomacromolecules; 2014 Nov; 15(11):4187-94. PubMed ID: 25251833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance.
    Gupta R; Shea J; Scafe C; Shurlygina A; Rapoport N
    J Control Release; 2015 Aug; 212():70-7. PubMed ID: 26091919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.