BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 24056148)

  • 1. Effect of task-specific training on functional recovery and corticospinal tract plasticity after stroke.
    Lee KH; Kim JH; Choi DH; Lee J
    Restor Neurol Neurosci; 2013; 31(6):773-85. PubMed ID: 24056148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different effects of running wheel exercise and skilled reaching training on corticofugal tract plasticity in hypertensive rats with cortical infarctions.
    Zhang C; Zou Y; Li K; Li C; Jiang Y; Sun J; Sun R; Wen H
    Behav Brain Res; 2018 Jan; 336():166-172. PubMed ID: 28882693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.
    Mahmood A; Wu H; Qu C; Xiong Y; Chopp M
    J Neurosurg; 2013 Feb; 118(2):381-9. PubMed ID: 23198801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Focal Stroke in the Developing Rat Motor Cortex Induces Age- and Experience-Dependent Maladaptive Plasticity of Corticospinal System.
    Gennaro M; Mattiello A; Mazziotti R; Antonelli C; Gherardini L; Guzzetta A; Berardi N; Cioni G; Pizzorusso T
    Front Neural Circuits; 2017; 11():47. PubMed ID: 28706475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contralesional axonal remodeling of the corticospinal system in adult rats after stroke and bone marrow stromal cell treatment.
    Liu Z; Li Y; Zhang X; Savant-Bhonsale S; Chopp M
    Stroke; 2008 Sep; 39(9):2571-7. PubMed ID: 18617661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Nkcc1 promotes axonal growth and motor recovery in ischemic rats.
    Mu XP; Wang HB; Cheng X; Yang L; Sun XY; Qu HL; Zhao SS; Zhou ZK; Liu TT; Xiao T; Song B; Jolkkonen J; Zhao CS
    Neuroscience; 2017 Dec; 365():83-93. PubMed ID: 28964752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network remodeling underlying motor map reorganization induced by rehabilitative training after ischemic stroke.
    Okabe N; Shiromoto T; Himi N; Lu F; Maruyama-Nakamura E; Narita K; Iwachidou N; Yagita Y; Miyamoto O
    Neuroscience; 2016 Dec; 339():338-362. PubMed ID: 27725217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human neural stem cells enhance structural plasticity and axonal transport in the ischaemic brain.
    Andres RH; Horie N; Slikker W; Keren-Gill H; Zhan K; Sun G; Manley NC; Pereira MP; Sheikh LA; McMillan EL; Schaar BT; Svendsen CN; Bliss TM; Steinberg GK
    Brain; 2011 Jun; 134(Pt 6):1777-89. PubMed ID: 21616972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Inhibition of DNA Methylation Combined with Task-Specific Training on Chronic Stroke Recovery.
    Choi IA; Lee CS; Kim HY; Choi DH; Lee J
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 29997355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rewiring of the corticospinal tract in the adult rat after unilateral stroke and anti-Nogo-A therapy.
    Lindau NT; Bänninger BJ; Gullo M; Good NA; Bachmann LC; Starkey ML; Schwab ME
    Brain; 2014 Mar; 137(Pt 3):739-56. PubMed ID: 24355710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. dl-3-n-butylphthalide promotes neuroplasticity and motor recovery in stroke rats.
    Sun Y; Cheng X; Wang H; Mu X; Liang Y; Luo Y; Qu H; Zhao C
    Behav Brain Res; 2017 Jun; 329():67-74. PubMed ID: 28442357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Defining mechanisms of neural plasticity after brainstem ischemia in rats.
    Minnerup J; Strecker JK; Wachsmuth L; Hoppen M; Schmidt A; Hermann DM; Wiendl H; Meuth S; Faber C; Diederich K; Schäbitz WR
    Ann Neurol; 2018 May; 83(5):1003-1015. PubMed ID: 29665155
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remote Corticospinal Tract Degeneration After Cortical Stroke in Rats May Not Preclude Spontaneous Sensorimotor Recovery.
    Sinke MRT; van Tilborg GAF; Meerwaldt AE; van Heijningen CL; van der Toorn A; Straathof M; Rakib F; Ali MHM; Al-Saad K; Otte WM; Dijkhuizen RM
    Neurorehabil Neural Repair; 2021 Nov; 35(11):1010-1019. PubMed ID: 34546138
    [No Abstract]   [Full Text] [Related]  

  • 14. Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study.
    Dechaumont-Palacin S; Marque P; De Boissezon X; Castel-Lacanal E; Carel C; Berry I; Pastor J; Albucher JF; Chollet F; Loubinoux I
    Neurorehabil Neural Repair; 2008; 22(2):154-65. PubMed ID: 17916656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constraint-induced movement therapy improves efficacy of task-specific training after severe cortical stroke depending on the ipsilesional corticospinal projections.
    Okabe N; Himi N; Nakamura-Maruyama E; Hayashi N; Sakamoto I; Narita K; Hasegawa T; Miyamoto O
    Exp Neurol; 2018 Jul; 305():108-120. PubMed ID: 29653186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rehabilitative skilled forelimb training enhances axonal remodeling in the corticospinal pathway but not the brainstem-spinal pathways after photothrombotic stroke in the primary motor cortex.
    Okabe N; Himi N; Maruyama-Nakamura E; Hayashi N; Narita K; Miyamoto O
    PLoS One; 2017; 12(11):e0187413. PubMed ID: 29095902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.
    Weishaupt N; Hurd C; Wei DZ; Fouad K
    Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment.
    Zhang Y; Xiong Y; Mahmood A; Meng Y; Liu Z; Qu C; Chopp M
    Brain Res; 2010 Sep; 1353():249-57. PubMed ID: 20654589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat.
    Hendriks WT; Eggers R; Ruitenberg MJ; Blits B; Hamers FP; Verhaagen J; Boer GJ
    J Neurotrauma; 2006 Jan; 23(1):18-35. PubMed ID: 16430370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects.
    Krajacic A; Weishaupt N; Girgis J; Tetzlaff W; Fouad K
    Behav Brain Res; 2010 Dec; 214(2):323-31. PubMed ID: 20573587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.