These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 24056254)
1. Expression and purification of recombinant NRL-Hsp90α and Cdc37-CRL proteins for in vitro Hsp90/Cdc37 inhibitors screening. He J; Niu X; Hu C; Zhang H; Guo Y; Ge Y; Wang G; Jiang Y Protein Expr Purif; 2013 Nov; 92(1):119-27. PubMed ID: 24056254 [TBL] [Abstract][Full Text] [Related]
2. Split Renilla luciferase protein fragment-assisted complementation (SRL-PFAC) to characterize Hsp90-Cdc37 complex and identify critical residues in protein/protein interactions. Jiang Y; Bernard D; Yu Y; Xie Y; Zhang T; Li Y; Burnett JP; Fu X; Wang S; Sun D J Biol Chem; 2010 Jul; 285(27):21023-36. PubMed ID: 20413594 [TBL] [Abstract][Full Text] [Related]
3. Identification of a DYRK1A Inhibitor that Induces Degradation of the Target Kinase using Co-chaperone CDC37 fused with Luciferase nanoKAZ. Sonamoto R; Kii I; Koike Y; Sumida Y; Kato-Sumida T; Okuno Y; Hosoya T; Hagiwara M Sci Rep; 2015 Aug; 5():12728. PubMed ID: 26234946 [TBL] [Abstract][Full Text] [Related]
4. Medium-Throughput Detection of Hsp90/Cdc37 Protein-Protein Interaction Inhibitors Using a Split Siddiqui FA; Parkkola H; Manoharan GB; Abankwa D SLAS Discov; 2020 Feb; 25(2):195-206. PubMed ID: 31662027 [TBL] [Abstract][Full Text] [Related]
5. Structure-based virtual screening and optimization of modulators targeting Hsp90-Cdc37 interaction. Wang L; Li L; Zhou ZH; Jiang ZY; You QD; Xu XL Eur J Med Chem; 2017 Aug; 136():63-73. PubMed ID: 28482218 [TBL] [Abstract][Full Text] [Related]
6. Characterization of celastrol to inhibit hsp90 and cdc37 interaction. Zhang T; Li Y; Yu Y; Zou P; Jiang Y; Sun D J Biol Chem; 2009 Dec; 284(51):35381-9. PubMed ID: 19858214 [TBL] [Abstract][Full Text] [Related]
7. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Smith JR; Workman P Cell Cycle; 2009 Feb; 8(3):362-72. PubMed ID: 19177013 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis and bioevaluation of inhibitors targeting HSP90-CDC37 protein-protein interaction based on a hydrophobic core. Zhang Q; Wu X; Zhou J; Zhang L; Xu X; Zhang L; You Q; Wang L Eur J Med Chem; 2021 Jan; 210():112959. PubMed ID: 33109397 [TBL] [Abstract][Full Text] [Related]
9. Differential Regulation of G1 CDK Complexes by the Hsp90-Cdc37 Chaperone System. Hallett ST; Pastok MW; Morgan RML; Wittner A; Blundell KLIM; Felletar I; Wedge SR; Prodromou C; Noble MEM; Pearl LH; Endicott JA Cell Rep; 2017 Oct; 21(5):1386-1398. PubMed ID: 29091774 [TBL] [Abstract][Full Text] [Related]
10. Optimization and biological evaluation of celastrol derivatives as Hsp90-Cdc37 interaction disruptors with improved druglike properties. Jiang F; Wang HJ; Bao QC; Wang L; Jin YH; Zhang Q; Jiang D; You QD; Xu XL Bioorg Med Chem; 2016 Nov; 24(21):5431-5439. PubMed ID: 27647369 [TBL] [Abstract][Full Text] [Related]
11. Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Smith JR; Clarke PA; de Billy E; Workman P Oncogene; 2009 Jan; 28(2):157-69. PubMed ID: 18931700 [TBL] [Abstract][Full Text] [Related]
12. Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte. Ota A; Zhang J; Ping P; Han J; Wang Y Circ Res; 2010 Apr; 106(8):1404-12. PubMed ID: 20299663 [TBL] [Abstract][Full Text] [Related]
13. Small-molecule inhibitor targeting the Hsp90-Cdc37 protein-protein interaction in colorectal cancer. Wang L; Zhang L; Li L; Jiang J; Zheng Z; Shang J; Wang C; Chen W; Bao Q; Xu X; Jiang Z; Zhang J; You Q Sci Adv; 2019 Sep; 5(9):eaax2277. PubMed ID: 31555737 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanism of inhibition of the human protein complex Hsp90-Cdc37, a kinome chaperone-cochaperone, by triterpene celastrol. Sreeramulu S; Gande SL; Göbel M; Schwalbe H Angew Chem Int Ed Engl; 2009; 48(32):5853-5. PubMed ID: 19585625 [No Abstract] [Full Text] [Related]
15. Design of Disruptors of the Hsp90-Cdc37 Interface. D'Annessa I; Hurwitz N; Pirota V; Beretta GL; Tinelli S; Woodford M; Freccero M; Mollapour M; Zaffaroni N; Wolfson H; Colombo G Molecules; 2020 Jan; 25(2):. PubMed ID: 31952296 [TBL] [Abstract][Full Text] [Related]
16. Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Zhao M; Ma J; Zhu HY; Zhang XH; Du ZY; Xu YJ; Yu XD Mol Cancer; 2011 Aug; 10():104. PubMed ID: 21871133 [TBL] [Abstract][Full Text] [Related]
17. Cdc37 (cell division cycle 37) restricts Hsp90 (heat shock protein 90) motility by interaction with N-terminal and middle domain binding sites. Eckl JM; Rutz DA; Haslbeck V; Zierer BK; Reinstein J; Richter K J Biol Chem; 2013 May; 288(22):16032-42. PubMed ID: 23569206 [TBL] [Abstract][Full Text] [Related]
18. Hsp90/Cdc37 chaperone/co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug Withaferin A. Grover A; Shandilya A; Agrawal V; Pratik P; Bhasme D; Bisaria VS; Sundar D BMC Bioinformatics; 2011 Feb; 12 Suppl 1(Suppl 1):S30. PubMed ID: 21342561 [TBL] [Abstract][Full Text] [Related]
19. Discovery and Optimization of Small Molecules Targeting the Protein-Protein Interaction of Heat Shock Protein 90 (Hsp90) and Cell Division Cycle 37 as Orally Active Inhibitors for the Treatment of Colorectal Cancer. Wang L; Jiang J; Zhang L; Zhang Q; Zhou J; Li L; Xu X; You Q J Med Chem; 2020 Feb; 63(3):1281-1297. PubMed ID: 31935086 [TBL] [Abstract][Full Text] [Related]
20. FW-04-806 inhibits proliferation and induces apoptosis in human breast cancer cells by binding to N-terminus of Hsp90 and disrupting Hsp90-Cdc37 complex formation. Huang W; Ye M; Zhang LR; Wu QD; Zhang M; Xu JH; Zheng W Mol Cancer; 2014 Jun; 13():150. PubMed ID: 24927996 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]