These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24056273)

  • 1. Electromagnetohydrodynamic modeling of Lorentz effect imaging.
    Pourtaheri N; Truong TK; Henriquez CS
    J Magn Reson; 2013 Nov; 236():57-65. PubMed ID: 24056273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lorentz effect imaging.
    Song AW; Takahashi AM
    Magn Reson Imaging; 2001 Jul; 19(6):763-7. PubMed ID: 11551715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging of shear waves induced by Lorentz force in soft tissues.
    Grasland-Mongrain P; Souchon R; Cartellier F; Zorgani A; Chapelon JY; Lafon C; Catheline S
    Phys Rev Lett; 2014 Jul; 113(3):038101. PubMed ID: 25083665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The movement of a nerve in a magnetic field: application to MRI Lorentz effect imaging.
    Roth BJ; Luterek A; Puwal S
    Med Biol Eng Comput; 2014 May; 52(5):491-8. PubMed ID: 24728667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finding neuroelectric activity under magnetic-field oscillations (NAMO) with magnetic resonance imaging in vivo.
    Truong TK; Song AW
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12598-601. PubMed ID: 16894177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical model of neural tissue displacement during Lorentz effect imaging.
    Roth BJ; Basser PJ
    Magn Reson Med; 2009 Jan; 61(1):59-64. PubMed ID: 19097218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lorentz effect imaging of ionic currents in solution using correct values for ion mobility.
    Wijesinghe RS; Roth BJ
    J Magn Reson; 2010 Jun; 204(2):225-7. PubMed ID: 20236845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI.
    Cassarà AM; Maraviglia B
    Neuroimage; 2008 Jul; 41(4):1228-41. PubMed ID: 18474435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the problem of concomitant gradients in ultra-low-field MRI.
    Nieminen JO; Ilmoniemi RJ
    J Magn Reson; 2010 Dec; 207(2):213-9. PubMed ID: 20884262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronized detection of minute electrical currents with MRI using Lorentz effect imaging.
    Truong TK; Wilbur JL; Song AW
    J Magn Reson; 2006 Mar; 179(1):85-91. PubMed ID: 16343959
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical simulation of time-resolved 3D phase-contrast magnetic resonance imaging.
    Puiseux T; Sewonu A; Moreno R; Mendez S; Nicoud F
    PLoS One; 2021; 16(3):e0248816. PubMed ID: 33770130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lorentz effect imaging of ionic currents in solution.
    Truong TK; Avram A; Song AW
    J Magn Reson; 2008 Mar; 191(1):93-9. PubMed ID: 18180187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-resolution MRI velocimetry compared with numerical simulations.
    Edelhoff D; Walczak L; Henning S; Weichert F; Suter D
    J Magn Reson; 2013 Oct; 235():42-9. PubMed ID: 23941817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI.
    Rispoli VC; Nielsen JF; Nayak KS; Carvalho JL
    Biomed Eng Online; 2015 Nov; 14():110. PubMed ID: 26611470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induced Current Magnetic Resonance Electrical Conductivity Imaging With Oscillating Gradients.
    Eroglu HH; Sadighi M; Eyuboglu BM
    IEEE Trans Med Imaging; 2018 Jul; 37(7):1606-1617. PubMed ID: 29969411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field effects on the vestibular system: calculation of the pressure on the cupula due to ionic current-induced Lorentz force.
    Antunes A; Glover PM; Li Y; Mian OS; Day BL
    Phys Med Biol; 2012 Jul; 57(14):4477-87. PubMed ID: 22722424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Difference frequency magneto-acousto-electrical tomography (DF-MAET): application of ultrasound-induced radiation force to imaging electrical current density.
    Renzhiglova E; Ivantsiv V; Xu Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Nov; 57(11):2391-402. PubMed ID: 21041128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An advanced phantom study assessing the feasibility of neuronal current imaging by ultra-low-field NMR.
    Körber R; Nieminen JO; Höfner N; Jazbinšek V; Scheer HJ; Kim K; Burghoff M
    J Magn Reson; 2013 Dec; 237():182-190. PubMed ID: 24252245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of MR signal modulation due to magnetic fields from neuronal currents in the adult human optic nerve and visual cortex.
    Chow LS; Cook GG; Whitby E; Paley MN
    Magn Reson Imaging; 2006 Jul; 24(6):681-91. PubMed ID: 16824962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.