BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 24056436)

  • 1. A quantitative speciation model for the adsorption of organic pollutants on activated carbon.
    Grivé M; García D; Domènech C; Richard L; Rojo I; Martínez X; Rovira M
    Water Sci Technol; 2013; 68(6):1370-6. PubMed ID: 24056436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a three-component competitive adsorption model to evaluate and optimize granular activated carbon systems.
    Schideman LC; Snoeyink VL; Mariñas BJ; Ding L; Campos C
    Water Res; 2007 Aug; 41(15):3289-98. PubMed ID: 17572469
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of the IAS theory combining to a three compartments description of natural organic matter to the adsorption of atrazine or diuron on activated carbon.
    Baudu M; Raveau D; Guibaud G
    Environ Technol; 2004 Jul; 25(7):763-73. PubMed ID: 15346857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of surface diffusivities in pesticide adsorption kinetics onto granular versus powdered activated carbon: experimental determination and modeling.
    Baup S; Wolbert D; Laplanche A
    Environ Technol; 2002 Oct; 23(10):1107-17. PubMed ID: 12465837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scaling trace organic contaminant adsorption capacity by granular activated carbon.
    Corwin CJ; Summers RS
    Environ Sci Technol; 2010 Jul; 44(14):5403-8. PubMed ID: 20560652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties.
    Cougnaud A; Faur C; Le Cloirec P
    Environ Technol; 2005 Aug; 26(8):857-66. PubMed ID: 16128384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic pesticide removal with activated carbon fibers.
    Martín-Gullón I; Font R
    Water Res; 2001 Feb; 35(2):516-20. PubMed ID: 11229006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorptive selenite removal from water using iron-coated GAC adsorbents.
    Zhang N; Lin LS; Gang D
    Water Res; 2008 Aug; 42(14):3809-16. PubMed ID: 18694584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and desorption of atrazine on carbon nanotubes.
    Yan XM; Shi BY; Lu JJ; Feng CH; Wang DS; Tang HX
    J Colloid Interface Sci; 2008 May; 321(1):30-8. PubMed ID: 18294649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of atrazine and imidacloprid removal from water using biochars: Designing single or multi-staged batch adsorption systems.
    Mandal A; Singh N
    Int J Hyg Environ Health; 2017 May; 220(3):637-645. PubMed ID: 28433639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluoride removal in water by a hybrid adsorbent lanthanum-carbon.
    Vences-Alvarez E; Velazquez-Jimenez LH; Chazaro-Ruiz LF; Diaz-Flores PE; Rangel-Mendez JR
    J Colloid Interface Sci; 2015 Oct; 455():194-202. PubMed ID: 26070190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-situ regeneration of saturated granular activated carbon by an iron oxide nanocatalyst.
    Chiu CA; Hristovski K; Huling S; Westerhoff P
    Water Res; 2013 Mar; 47(4):1596-603. PubMed ID: 23298638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.
    Sharma RK; Kumar A; Joseph PE
    Bull Environ Contam Toxicol; 2008 May; 80(5):461-4. PubMed ID: 18357400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulataneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by dielectric barrier discharge plasma.
    Qu GZ; Lu N; Li J; Wu Y; Li GF; Li D
    J Hazard Mater; 2009 Dec; 172(1):472-8. PubMed ID: 19656621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of water temperature on the adsorption equilibrium of dissolved organic matter and atrazine on granular activated carbon.
    Schreiber B; Schmalz V; Brinkmann T; Worch E
    Environ Sci Technol; 2007 Sep; 41(18):6448-53. PubMed ID: 17948792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies on removal of metribuzin, bromacil, 2,4-D and atrazine from water by adsorption on high area carbon cloth.
    Ayranci E; Hoda N
    J Hazard Mater; 2004 Aug; 112(1-2):163-8. PubMed ID: 15225943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metaldehyde removal from aqueous solution by adsorption and ion exchange mechanisms onto activated carbon and polymeric sorbents.
    Tao B; Fletcher AJ
    J Hazard Mater; 2013 Jan; 244-245():240-50. PubMed ID: 23257324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement effect of NOM on atrazine adsorption by PACs with different pore size distributions.
    Li Q; Snoeyink VL; Campos C; Mariñas BJ
    Environ Sci Technol; 2002 Apr; 36(7):1510-5. PubMed ID: 11999059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atrazine removal using adsorption and electrochemical regeneration.
    Brown NW; Roberts EP; Chasiotis A; Cherdron T; Sanghrajka N
    Water Res; 2004 Jul; 38(13):3067-74. PubMed ID: 15261545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile synthesis of highly porous "carbon sponge" with adsorption and co-adsorption behavior of lead ions and atrazine.
    Yang F; Zhang S; Sun L; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18705-18716. PubMed ID: 29705906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.