These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24056441)

  • 1. Fe(II) oxidation during acid mine drainage neutralization in a pilot-scale Sequencing Batch Reactor.
    Zvimba JN; Mathye M; Vadapalli VR; Swanepoel H; Bologo L
    Water Sci Technol; 2013; 68(6):1406-11. PubMed ID: 24056441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry.
    Vadapalli VR; Zvimba JN; Mathye M; Fischer H; Bologo L
    Environ Technol; 2015; 36(19):2515-23. PubMed ID: 25846482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of sulphates acidity and iron from acid mine drainage in a bench scale biochemical treatment system.
    Prasad D; Henry JG
    Environ Technol; 2009 Feb; 30(2):151-60. PubMed ID: 19278156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of calcium carbonate from waste gypsum and utilization for remediation of acid mine drainage from coal mines.
    Mulopo J; Radebe V
    Water Sci Technol; 2012; 66(6):1296-300. PubMed ID: 22828309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of iron(II)-rich acid mine water with limestone and oxygen.
    Mohajane GB; Maree JP; Panichev N
    Water Sci Technol; 2014; 70(2):209-17. PubMed ID: 25051466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of heavy metals in an abandoned mine drainage via ozone oxidation: a pilot-scale operation.
    Seo SH; Sung BW; Kim GJ; Chu KH; Um CY; Yun SL; Ra YH; Ko KB
    Water Sci Technol; 2010; 62(9):2115-20. PubMed ID: 21045339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel application of H2O2-Fe(II) process for arsenate removal from synthetic acid mine drainage (AMD) water.
    Dong H; Guan X; Wang D; Li C; Yang X; Dou X
    Chemosphere; 2011 Nov; 85(7):1115-21. PubMed ID: 21840033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of hybrid and conventional sequencing batch reactor and continuous processes.
    Tam HL; Tang DT; Leung WY; Ho KM; Greenfield PF
    Water Sci Technol; 2004; 50(10):59-65. PubMed ID: 15656296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of Hydroxyl radicals from oxygenation of simulated AMD due to CaCO
    Zhu J; Zhang P; Yuan S; Liao P; Qian A; Liu X; Tong M; Li L
    Water Res; 2017 Mar; 111():118-126. PubMed ID: 28063284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor.
    Lai E; Senkpiel S; Solley D; Keller J
    Water Sci Technol; 2004; 50(10):27-33. PubMed ID: 15656292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel bioelectrochemical system for chemical-free permanent treatment of acid mine drainage.
    Pozo G; Pongy S; Keller J; Ledezma P; Freguia S
    Water Res; 2017 Dec; 126():411-420. PubMed ID: 28987953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the addition of zero valent iron (Fe(0)) on the batch biological sulphate reduction using grass cellulose as carbon source.
    Mulopo J; Schaefer L
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2020-9. PubMed ID: 24018847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural pretreatment and passive remediation of highly polluted acid mine drainage.
    Macías F; Caraballo MA; Nieto JM; Rötting TS; Ayora C
    J Environ Manage; 2012 Aug; 104():93-100. PubMed ID: 22484707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe-As sludge stability and effluent quality for a two-stage As-contaminated water treatment with Fe(II) and aeration.
    Zhuang JM; Hobenshield E; Walsh T
    Environ Technol; 2009 Feb; 30(2):199-213. PubMed ID: 19278161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Treatment of dairy effluents in an aerobic granular sludge sequencing batch reactor.
    Schwarzenbeck N; Borges JM; Wilderer PA
    Appl Microbiol Biotechnol; 2005 Mar; 66(6):711-8. PubMed ID: 15558277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining photo-Fenton process with biological sequencing batch reactor for 2,4-dichlorophenol degradation.
    Al Momani F; Gonzalez O; Sans C; Esplugas S
    Water Sci Technol; 2004; 49(4):293-8. PubMed ID: 15077986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient Low-pH Iron Removal by a Microbial Iron Oxide Mound Ecosystem at Scalp Level Run.
    Grettenberger CL; Pearce AR; Bibby KJ; Jones DS; Burgos WD; Macalady JL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28087535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.