BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 24056499)

  • 1. RNA-seq-based comparative transcriptome analysis of the syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528 grown autotrophically and heterotrophically.
    Tan Y; Liu J; Chen X; Zheng H; Li F
    Mol Biosyst; 2013 Nov; 9(11):2775-84. PubMed ID: 24056499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Heterologous Mevalonic Acid Pathway Enzymes in Clostridium ljungdahlii for the Conversion of Fructose and of Syngas to Mevalonate and Isoprene.
    Diner BA; Fan J; Scotcher MC; Wells DH; Whited GM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 29054870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic profiles of Clostridium ljungdahlii during lithotrophic growth with syngas or H
    Aklujkar M; Leang C; Shrestha PM; Shrestha M; Lovley DR
    Sci Rep; 2017 Oct; 7(1):13135. PubMed ID: 29030620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of two novel butanol dehydrogenases involved in butanol degradation in syngas-utilizing bacterium Clostridium ljungdahlii DSM 13528.
    Tan Y; Liu J; Liu Z; Li F
    J Basic Microbiol; 2014 Sep; 54(9):996-1004. PubMed ID: 23720212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Heterodimeric Reduced-Ferredoxin-Dependent Methylenetetrahydrofolate Reductase from Syngas-Fermenting Clostridium ljungdahlii.
    Yi J; Huang H; Liang J; Wang R; Liu Z; Li F; Wang S
    Microbiol Spectr; 2021 Oct; 9(2):e0095821. PubMed ID: 34643446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Clostridium ljungdahlii as the gas-fermenting cell factory for the production of biofuels and biochemicals.
    Zhang L; Zhao R; Jia D; Jiang W; Gu Y
    Curr Opin Chem Biol; 2020 Dec; 59():54-61. PubMed ID: 32480247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.
    Xie BT; Liu ZY; Tian L; Li FL; Chen XH
    Bioresour Technol; 2015 Feb; 177():302-7. PubMed ID: 25496952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles.
    Kim YK; Park SE; Lee H; Yun JY
    Bioresour Technol; 2014 May; 159():446-50. PubMed ID: 24703605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor.
    Ukpong MN; Atiyeh HK; De Lorme MJ; Liu K; Zhu X; Tanner RS; Wilkins MR; Stevenson BS
    Biotechnol Bioeng; 2012 Nov; 109(11):2720-8. PubMed ID: 22566280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR.
    Liu J; Tan Y; Yang X; Chen X; Li F
    J Biosci Bioeng; 2013 Oct; 116(4):460-4. PubMed ID: 23651807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas.
    Köpke M; Mihalcea C; Liew F; Tizard JH; Ali MS; Conolly JJ; Al-Sinawi B; Simpson SD
    Appl Environ Microbiol; 2011 Aug; 77(15):5467-75. PubMed ID: 21685168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Traits of selected Clostridium strains for syngas fermentation to ethanol.
    Martin ME; Richter H; Saha S; Angenent LT
    Biotechnol Bioeng; 2016 Mar; 113(3):531-9. PubMed ID: 26331212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic response of Clostridium ljungdahlii to oxygen exposure.
    Whitham JM; Tirado-Acevedo O; Chinn MS; Pawlak JJ; Grunden AM
    Appl Environ Microbiol; 2015 Dec; 81(24):8379-91. PubMed ID: 26431975
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converting carbon dioxide to butyrate with an engineered strain of Clostridium ljungdahlii.
    Ueki T; Nevin KP; Woodard TL; Lovley DR
    mBio; 2014 Oct; 5(5):e01636-14. PubMed ID: 25336453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of chemicals from C1 gases (CO, CO
    Fernández-Naveira Á; Abubackar HN; Veiga MC; Kennes C
    World J Microbiol Biotechnol; 2017 Mar; 33(3):43. PubMed ID: 28160118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ethanol Metabolism Dynamics in Clostridium ljungdahlii Grown on Carbon Monoxide.
    Liu ZY; Jia DC; Zhang KD; Zhu HF; Zhang Q; Jiang WH; Gu Y; Li FL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32414802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracing carbon monoxide uptake by Clostridium ljungdahlii during ethanol fermentation using (13)C-enrichment technique.
    Yun SI; Gang SJ; Ro HM; Lee MJ; Choi WJ; Hong SG; Kang KK
    Bioprocess Biosyst Eng; 2013 May; 36(5):591-5. PubMed ID: 22940807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of carbon and energy utilization through differential translational efficiency.
    Al-Bassam MM; Kim JN; Zaramela LS; Kellman BP; Zuniga C; Wozniak JM; Gonzalez DJ; Zengler K
    Nat Commun; 2018 Oct; 9(1):4474. PubMed ID: 30367068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Engineering of
    Siebert D; Busche T; Metz AY; Smaili M; Queck BAW; Kalinowski J; Eikmanns BJ
    ACS Synth Biol; 2020 Jun; 9(6):1426-1440. PubMed ID: 32379961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.