These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. On the chemical synthesis and drug delivery response of folate receptor-activated, polyethylene glycol-functionalized magnetite nanoparticles. Zhang J; Rana S; Srivastava RS; Misra RD Acta Biomater; 2008 Jan; 4(1):40-8. PubMed ID: 17681499 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of PEG-iron oxide core-shell composite nanoparticles for thermal therapy. Wydra RJ; Kruse AM; Bae Y; Anderson KW; Hilt JZ Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4660-6. PubMed ID: 24094173 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of host-guest system to enhance the tamoxifen efficiency. Heidari Majd M; Akbarzadeh A; Sargazi A Artif Cells Nanomed Biotechnol; 2017 May; 45(3):441-447. PubMed ID: 27012732 [TBL] [Abstract][Full Text] [Related]
6. Poly(ethylene glycol)-modified PAMAM-Fe3O4-doxorubicin triads with the potential for improved therapeutic efficacy: generation-dependent increased drug loading and retention at neutral pH and increased release at acidic pH. Nigam S; Chandra S; Newgreen DF; Bahadur D; Chen Q Langmuir; 2014 Feb; 30(4):1004-11. PubMed ID: 24446987 [TBL] [Abstract][Full Text] [Related]
7. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. Na HB; Palui G; Rosenberg JT; Ji X; Grant SC; Mattoussi H ACS Nano; 2012 Jan; 6(1):389-99. PubMed ID: 22176202 [TBL] [Abstract][Full Text] [Related]
8. Thermal and pH responsive polymer-tethered multifunctional magnetic nanoparticles for targeted delivery of anticancer drug. Sahoo B; Devi KS; Banerjee R; Maiti TK; Pramanik P; Dhara D ACS Appl Mater Interfaces; 2013 May; 5(9):3884-93. PubMed ID: 23551195 [TBL] [Abstract][Full Text] [Related]
9. PEGylated graphene oxide/Fe3O4 nanocomposite: Synthesis, characterization, and evaluation of its performance as de novo drug delivery nanosystem. Jafarizad A; Taghizadehgh-Alehjougi A; Eskandani M; Hatamzadeh M; Abbasian M; Mohammad-Rezaei R; Mohammadzadeh M; Toğar B; Jaymand M Biomed Mater Eng; 2018; 29(2):177-190. PubMed ID: 29457592 [TBL] [Abstract][Full Text] [Related]
10. Tamoxifen loaded folic acid armed PEGylated magnetic nanoparticles for targeted imaging and therapy of cancer. Heidari Majd M; Asgari D; Barar J; Valizadeh H; Kafil V; Abadpour A; Moumivand E; Mojarrad JS; Rashidi MR; Coukos G; Omidi Y Colloids Surf B Biointerfaces; 2013 Jun; 106():117-25. PubMed ID: 23434700 [TBL] [Abstract][Full Text] [Related]
11. Uniform PEGylated PLGA Microcapsules with Embedded Fe3O4 Nanoparticles for US/MR Dual-Modality Imaging. Xu S; Yang F; Zhou X; Zhuang Y; Liu B; Mu Y; Wang X; Shen H; Zhi G; Wu D ACS Appl Mater Interfaces; 2015 Sep; 7(36):20460-8. PubMed ID: 26327472 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional magnetic nanoparticles for enhanced intracellular drug transport. Tudisco C; Cambria MT; Sinatra F; Bertani F; Alba A; Giuffrida AE; Saccone S; Fantechi E; Innocenti C; Sangregorio C; Dalcanale E; Condorelli GG J Mater Chem B; 2015 May; 3(20):4134-4145. PubMed ID: 32262291 [TBL] [Abstract][Full Text] [Related]
13. The Interplay between Fe Cambria MT; Villaggio G; Laudani S; Pulvirenti L; Federico C; Saccone S; Condorelli GG; Sinatra F Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33187164 [TBL] [Abstract][Full Text] [Related]
14. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Bhandari R; Gupta P; Dziubla T; Hilt JZ Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():59-64. PubMed ID: 27287099 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Xiong Z; Zhao L; Wang F; Zhu J; Qin H; Wu R; Zhang W; Zou H Chem Commun (Camb); 2012 Aug; 48(65):8138-40. PubMed ID: 22772488 [TBL] [Abstract][Full Text] [Related]
16. A versatile and modular approach to functionalisation of deep-cavity cavitands via"click" chemistry. Li Y; Giles MD; Liu S; Laurent BA; Hoskins JN; Cortez MA; Sreerama SG; Gibb BC; Grayson SM Chem Commun (Camb); 2011 Aug; 47(32):9036-8. PubMed ID: 21603694 [TBL] [Abstract][Full Text] [Related]
17. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. Zhang W; Shi X; Huang J; Zhang Y; Wu Z; Xian Y Chemphyschem; 2012 Oct; 13(14):3388-96. PubMed ID: 22753190 [TBL] [Abstract][Full Text] [Related]
18. From Bench to Cell: A Roadmap for Assessing the Bioorthogonal "Click" Reactivity of Magnetic Nanoparticles for Cell Surface Engineering. Idiago-López J; Moreno-Antolín E; Eceiza M; Aizpurua JM; Grazú V; de la Fuente JM; Fratila RM Bioconjug Chem; 2022 Sep; 33(9):1620-1633. PubMed ID: 35857350 [TBL] [Abstract][Full Text] [Related]
19. Cavitand-functionalized SWCNTs for N-methylammonium detection. Dionisio M; Schnorr JM; Michaelis VK; Griffin RG; Swager TM; Dalcanale E J Am Chem Soc; 2012 Apr; 134(15):6540-3. PubMed ID: 22475006 [TBL] [Abstract][Full Text] [Related]
20. PEG-coumarin based biocompatible self-assembled fluorescent nanoaggregates synthesized via click reactions and studies of aggregation behavior. Behl G; Sikka M; Chhikara A; Chopra M J Colloid Interface Sci; 2014 Feb; 416():151-60. PubMed ID: 24370415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]