These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Recent Development of CO Xie J; Wang Y Acc Chem Res; 2019 Jun; 52(6):1721-1729. PubMed ID: 31120728 [TBL] [Abstract][Full Text] [Related]
5. Facile in Situ Preparation of Graphitic-C₃N₄@carbon Paper As an Efficient Metal-Free Cathode for Nonaqueous Li-O₂ Battery. Yi J; Liao K; Zhang C; Zhang T; Li F; Zhou H ACS Appl Mater Interfaces; 2015 May; 7(20):10823-7. PubMed ID: 25901759 [TBL] [Abstract][Full Text] [Related]
6. Lithium oxides precipitation in nonaqueous Li-air batteries. Hou J; Yang M; Ellis MW; Moore RB; Yi B Phys Chem Chem Phys; 2012 Oct; 14(39):13487-501. PubMed ID: 22968061 [TBL] [Abstract][Full Text] [Related]
7. Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries. Jung KN; Jung JH; Im WB; Yoon S; Shin KH; Lee JW ACS Appl Mater Interfaces; 2013 Oct; 5(20):9902-7. PubMed ID: 24053465 [TBL] [Abstract][Full Text] [Related]
8. Potassium Superoxide: A Unique Alternative for Metal-Air Batteries. Xiao N; Ren X; McCulloch WD; Gourdin G; Wu Y Acc Chem Res; 2018 Sep; 51(9):2335-2343. PubMed ID: 30178665 [TBL] [Abstract][Full Text] [Related]
9. Critical Advances in Ambient Air Operation of Nonaqueous Rechargeable Li-Air Batteries. Liu L; Guo H; Fu L; Chou S; Thiele S; Wu Y; Wang J Small; 2021 Mar; 17(9):e1903854. PubMed ID: 31532893 [TBL] [Abstract][Full Text] [Related]
10. One-dimensional manganese-cobalt oxide nanofibres as bi-functional cathode catalysts for rechargeable metal-air batteries. Jung KN; Hwang SM; Park MS; Kim KJ; Kim JG; Dou SX; Kim JH; Lee JW Sci Rep; 2015 Jan; 5():7665. PubMed ID: 25563733 [TBL] [Abstract][Full Text] [Related]
11. Edge Defect Engineering of Nitrogen-Doped Carbon for Oxygen Electrocatalysts in Zn-Air Batteries. Wang Q; Lei Y; Zhu Y; Wang H; Feng J; Ma G; Wang Y; Li Y; Nan B; Feng Q; Lu Z; Yu H ACS Appl Mater Interfaces; 2018 Sep; 10(35):29448-29456. PubMed ID: 30088907 [TBL] [Abstract][Full Text] [Related]
13. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
14. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Kar M; Simons TJ; Forsyth M; MacFarlane DR Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926 [TBL] [Abstract][Full Text] [Related]
15. Development, Essence, and Application of a Metal-Catalysis Battery. Feng Y; Yan S; Zhang X; Wang Y Acc Chem Res; 2023 Jun; 56(12):1645-1655. PubMed ID: 37282625 [TBL] [Abstract][Full Text] [Related]
16. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Sassin MB; Chervin CN; Rolison DR; Long JW Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc-air batteries. Prabu M; Ketpang K; Shanmugam S Nanoscale; 2014 Mar; 6(6):3173-81. PubMed ID: 24496578 [TBL] [Abstract][Full Text] [Related]
18. Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal-Air Batteries. Huang Y; Wang Y; Tang C; Wang J; Zhang Q; Wang Y; Zhang J Adv Mater; 2019 Mar; 31(13):e1803800. PubMed ID: 30247779 [TBL] [Abstract][Full Text] [Related]
19. Battery technologies for large-scale stationary energy storage. Soloveichik GL Annu Rev Chem Biomol Eng; 2011; 2():503-27. PubMed ID: 22432629 [TBL] [Abstract][Full Text] [Related]
20. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]