BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 24056782)

  • 1. Targeting Copper Homeostasis Improves Functioning of
    Soczewka P; Tribouillard-Tanvier D; di Rago JP; Zoladek T; Kaminska J
    Int J Mol Sci; 2021 Feb; 22(5):. PubMed ID: 33668157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic and genetic analysis of the response of S. cerevisiae to soluble copper leads to improvement of the antimicrobial function of cellulosic copper nanoparticles.
    Rong-Mullins X; Winans MJ; Lee JB; Lonergan ZR; Pilolli VA; Weatherly LM; Carmenzind TW; Jiang L; Cumming JR; Oporto GS; Gallagher JEG
    Metallomics; 2017 Sep; 9(9):1304-1315. PubMed ID: 28869270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opportunities in multidimensional trace metal imaging: taking copper-associated disease research to the next level.
    Vogt S; Ralle M
    Anal Bioanal Chem; 2013 Feb; 405(6):1809-20. PubMed ID: 23079951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper transporters are responsible for copper isotopic fractionation in eukaryotic cells.
    Cadiou JL; Pichat S; Bondanese VP; Soulard A; Fujii T; Albarède F; Oger P
    Sci Rep; 2017 Mar; 7():44533. PubMed ID: 28303916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The metabolic background is a global player in Saccharomyces gene expression epistasis.
    Alam MT; Zelezniak A; Mülleder M; Shliaha P; Schwarz R; Capuano F; Vowinckel J; Radmanesfahar E; Krüger A; Calvani E; Michel S; Börno S; Christen S; Patil KR; Timmermann B; Lilley KS; Ralser M
    Nat Microbiol; 2016 Feb; 1():15030. PubMed ID: 27572163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suboptimal Global Transcriptional Response Increases the Harmful Effects of Loss-of-Function Mutations.
    Kovács K; Farkas Z; Bajić D; Kalapis D; Daraba A; Almási K; Kintses B; Bódi Z; Notebaart RA; Poyatos JF; Kemmeren P; Holstege FCP; Pál C; Papp B
    Mol Biol Evol; 2021 Mar; 38(3):1137-1150. PubMed ID: 33306797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High Iron Consumption Modifies the Hepatic Transcriptome Related to Cholesterol Metabolism.
    Lee J; Jang H; Doo M; Kim BH; Ha JH
    J Med Food; 2024 Jun; ():. PubMed ID: 38905120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of Cu entry into the brain: many unanswered questions.
    Roy S; Lutsenko S
    Neural Regen Res; 2024 Nov; 19(11):2421-2429. PubMed ID: 38526278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of a New Probe Based on Copper Chaperone Protein for Detecting Cu
    Ren J; Li L; Han H; Chen Y; Qin Z; Song Z
    Molecules; 2024 Feb; 29(5):. PubMed ID: 38474532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic transcriptional response of Saccharomyces cerevisiae cells to copper.
    Oc S; Eraslan S; Kirdar B
    Sci Rep; 2020 Oct; 10(1):18487. PubMed ID: 33116258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extension of the yeast metabolic model to include iron metabolism and its use to estimate global levels of iron-recruiting enzyme abundance from cofactor requirements.
    Dikicioglu D; Oliver SG
    Biotechnol Bioeng; 2019 Mar; 116(3):610-621. PubMed ID: 30578666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doxorubicin induces an extensive transcriptional and metabolic rewiring in yeast cells.
    Taymaz-Nikerel H; Karabekmez ME; Eraslan S; Kırdar B
    Sci Rep; 2018 Sep; 8(1):13672. PubMed ID: 30209405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans.
    Garcia-Santamarina S; Festa RA; Smith AD; Yu CH; Probst C; Ding C; Homer CM; Yin J; Noonan JP; Madhani H; Perfect JR; Thiele DJ
    Mol Microbiol; 2018 Jun; 108(5):473-494. PubMed ID: 29608794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingolipids and mitochondrial function, lessons learned from yeast.
    Spincemaille P; Cammue BP; Thevissen K
    Microb Cell; 2014 Jun; 1(7):210-224. PubMed ID: 28357246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic response of yeast cells to ATX1 deletion under different copper levels.
    Cankorur-Cetinkaya A; Eraslan S; Kirdar B
    BMC Genomics; 2016 Jul; 17():489. PubMed ID: 27401861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations.
    Taymaz-Nikerel H; Cankorur-Cetinkaya A; Kirdar B
    Front Bioeng Biotechnol; 2016; 4():17. PubMed ID: 26925399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal copper homeostasis susceptibility by genetic defects in dysbindin, a schizophrenia susceptibility factor.
    Gokhale A; Vrailas-Mortimer A; Larimore J; Comstra HS; Zlatic SA; Werner E; Manvich DF; Iuvone PM; Weinshenker D; Faundez V
    Hum Mol Genet; 2015 Oct; 24(19):5512-23. PubMed ID: 26199316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A system based network approach to ethanol tolerance in Saccharomyces cerevisiae.
    Kasavi C; Eraslan S; Arga KY; Oner ET; Kirdar B
    BMC Syst Biol; 2014 Aug; 8():90. PubMed ID: 25103914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional remodelling in response to changing copper levels in the Wilson and Menkes disease model of Saccharomyces cerevisiae.
    Cankorur-Cetinkaya A; Eraslan S; Kirdar B
    Mol Biosyst; 2013 Nov; 9(11):2889-908. PubMed ID: 24056782
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.