These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24056796)

  • 1. A theoretical model for metal-graphene contact resistance using a DFT-NEGF method.
    Ji X; Zhang J; Wang Y; Qian H; Yu Z
    Phys Chem Chem Phys; 2013 Nov; 15(41):17883-6. PubMed ID: 24056796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-contact-resistance graphene devices with nickel-etched-graphene contacts.
    Leong WS; Gong H; Thong JT
    ACS Nano; 2014 Jan; 8(1):994-1001. PubMed ID: 24328346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes.
    Leong WS; Luo X; Li Y; Khoo KH; Quek SY; Thong JT
    ACS Nano; 2015 Jan; 9(1):869-77. PubMed ID: 25517793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic and spin transport properties of graphene nanoribbon mediated by metal adatoms: a study by the QUAMBO-NEGF approach.
    Zhang GP; Liu X; Wang CZ; Yao YX; Zhang J; Ho KM
    J Phys Condens Matter; 2013 Mar; 25(10):105302. PubMed ID: 23399804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical properties of graphene-metal contacts.
    Cusati T; Fiori G; Gahoi A; Passi V; Lemme MC; Fortunelli A; Iannaccone G
    Sci Rep; 2017 Jul; 7(1):5109. PubMed ID: 28698652
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tug-of-war between corrugation and binding energy: revealing the formation of multiple moiré patterns on a strongly interacting graphene-metal system.
    Martín-Recio A; Romero-Muñiz C; Martínez-Galera AJ; Pou P; Pérez R; Gómez-Rodríguez JM
    Nanoscale; 2015 Jul; 7(26):11300-9. PubMed ID: 25988393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the electronic structure and transport properties of graphene by noncovalent functionalization: effects of organic donor, acceptor and metal atoms.
    Zhang YH; Zhou KG; Xie KF; Zeng J; Zhang HL; Peng Y
    Nanotechnology; 2010 Feb; 21(6):065201. PubMed ID: 20057033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of electric field-tunable tunneling probability in graphene and metal contact.
    Peng S; Jin Z; Zhang D; Shi J; Zhang Y; Yu G
    Nanoscale; 2017 Jul; 9(27):9520-9528. PubMed ID: 28660985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Length-dependent conductance of molecular wires and contact resistance in metal-molecule-metal junctions.
    Liu H; Wang N; Zhao J; Guo Y; Yin X; Boey FY; Zhang H
    Chemphyschem; 2008 Jul; 9(10):1416-24. PubMed ID: 18512822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A current-voltage model for Schottky-barrier graphene-based transistors.
    Jiménez D
    Nanotechnology; 2008 Aug; 19(34):345204. PubMed ID: 21730642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic structure and transport of a carbon chain between graphene nanoribbon leads.
    Zhang GP; Fang XW; Yao YX; Wang CZ; Ding ZJ; Ho KM
    J Phys Condens Matter; 2011 Jan; 23(2):025302. PubMed ID: 21406839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule sensing of environmental pH--an STM break junction and NEGF-DFT approach.
    Li Z; Smeu M; Afsari S; Xing Y; Ratner MA; Borguet E
    Angew Chem Int Ed Engl; 2014 Jan; 53(4):1098-102. PubMed ID: 24339362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of molecular conduction. III. A nonequilibrium-Green's-function-based Hartree-Fock approach.
    Shimazaki T; Xue Y; Ratner MA; Yamashita K
    J Chem Phys; 2006 Mar; 124(11):114708. PubMed ID: 16555911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A theoretical view of unimolecular rectification.
    Stadler R; Geskin V; Cornil J
    J Phys Condens Matter; 2008 Sep; 20(37):374105. PubMed ID: 21694412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure and quantum transport properties of trilayers formed from graphene and boron nitride.
    Zhong X; Amorim RG; Scheicher RH; Pandey R; Karna SP
    Nanoscale; 2012 Sep; 4(17):5490-8. PubMed ID: 22854975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Realistic metal-graphene contact structures.
    Gong C; McDonnell S; Qin X; Azcatl A; Dong H; Chabal YJ; Cho K; Wallace RM
    ACS Nano; 2014 Jan; 8(1):642-9. PubMed ID: 24261695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A more reliable measurement method for metal/graphene contact resistance.
    Wang S; Mao D; Jin Z; Peng S; Zhang D; Shi J; Wang X
    Nanotechnology; 2015 Oct; 26(40):405706. PubMed ID: 26376743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical assessment of graphene-metal contacts.
    Janthon P; Viñes F; Kozlov SM; Limtrakul J; Illas F
    J Chem Phys; 2013 Jun; 138(24):244701. PubMed ID: 23822258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transfer characteristics and contact resistance in Ni- and Ti-contacted graphene-based field-effect transistors.
    Di Bartolomeo A; Giubileo F; Iemmo L; Romeo F; Santandrea S; Gambardella U
    J Phys Condens Matter; 2013 Apr; 25(15):155303. PubMed ID: 23528822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.