BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24057297)

  • 1. Electrohydrodynamic direct-writing.
    Huang Y; Bu N; Duan Y; Pan Y; Liu H; Yin Z; Xiong Y
    Nanoscale; 2013 Dec; 5(24):12007-17. PubMed ID: 24057297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale Direct-Writing of Aligned Nanofibers for Flexible Electronics.
    Ye D; Ding Y; Duan Y; Su J; Yin Z; Huang YA
    Small; 2018 May; 14(21):e1703521. PubMed ID: 29473336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile, kinetically controlled, high precision electrohydrodynamic writing of micro/nanofibers.
    Huang Y; Duan Y; Ding Y; Bu N; Pan Y; Lu N; Yin Z
    Sci Rep; 2014 Aug; 4():5949. PubMed ID: 25091829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Helix Electrohydrodynamic Printing of Highly Aligned Serpentine Micro/Nanofibers.
    Duan Y; Ding Y; Xu Z; Huang Y; Yin Z
    Polymers (Basel); 2017 Sep; 9(9):. PubMed ID: 30965737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing.
    Duan Y; Huang Y; Yin Z; Bu N; Dong W
    Nanoscale; 2014 Mar; 6(6):3289-95. PubMed ID: 24509570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative Investigation of the Process Parameters of Electrohydrodynamic Direct-Writing and Their Effects on Fiber Surface Roughness and Cell Adhesion.
    Jiang C; Wang K; Jiang X; Zhang C; Wang B
    Polymers (Basel); 2020 Oct; 12(11):. PubMed ID: 33113835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic Direct-Writing Micro/Nanofibrous Architectures: Principle, Materials, and Biomedical Applications.
    Liu Z; Jia J; Lei Q; Wei Y; Hu Y; Lian X; Zhao L; Xie X; Bai H; He X; Si L; Livermore C; Kuang R; Zhang Y; Wang J; Yu Z; Ma X; Huang D
    Adv Healthc Mater; 2024 Jun; ():e2400930. PubMed ID: 38847291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designs and applications of electrohydrodynamic 3D printing.
    Gao D; Zhou JG
    Int J Bioprint; 2019; 5(1):172. PubMed ID: 32782979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Process Parameters on Organic Micro Patterns Fabricated on a Flexible Substrate Using the Near-Field Electrohydrodynamic Direct-Writing Method.
    Chen J; Wu T; Zhang L; Li P; Feng X; Li D
    Micromachines (Basel); 2019 Apr; 10(5):. PubMed ID: 31035628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms and modeling of electrohydrodynamic phenomena.
    Gao D; Yao D; Leist SK; Fei Y; Zhou J
    Int J Bioprint; 2019; 5(1):166. PubMed ID: 32782978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dip-pen nanolithography of electrical contacts to single-walled carbon nanotubes.
    Wang WM; LeMieux MC; Selvarasah S; Dokmeci MR; Bao Z
    ACS Nano; 2009 Nov; 3(11):3543-51. PubMed ID: 19852486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art.
    Grigorescu AE; Hagen CW
    Nanotechnology; 2009 Jul; 20(29):292001. PubMed ID: 19567961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size.
    Gan Z; Cao Y; Evans RA; Gu M
    Nat Commun; 2013; 4():2061. PubMed ID: 23784312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct-Write, Self-Aligned Electrospinning on Paper for Controllable Fabrication of Three-Dimensional Structures.
    Luo G; Teh KS; Liu Y; Zang X; Wen Z; Lin L
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27765-70. PubMed ID: 26592741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser direct writing using submicron-diameter fibers.
    Tian F; Yang G; Bai J; Xu J; Hou C; Liang Y; Wang K
    Opt Express; 2009 Oct; 17(22):19960-8. PubMed ID: 19997220
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale.
    Reiser A; Lindén M; Rohner P; Marchand A; Galinski H; Sologubenko AS; Wheeler JM; Zenobi R; Poulikakos D; Spolenak R
    Nat Commun; 2019 Apr; 10(1):1853. PubMed ID: 31015443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of an inorganic nano structure for a large area via electrohydrodynamic lithography (EHL).
    Kim HN; Lee SO; Kang DJ; Lee JJ
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5307-12. PubMed ID: 22966562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic electrospun nanofibers for tissue regeneration.
    Liao S; Li B; Ma Z; Wei H; Chan C; Ramakrishna S
    Biomed Mater; 2006 Sep; 1(3):R45-53. PubMed ID: 18458387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct In- and Out-of-Plane Writing of Metals on Insulators by Electron-Beam-Enabled, Confined Electrodeposition with Submicrometer Feature Size.
    Nydegger M; Wang ZJ; Willinger MG; Spolenak R; Reiser A
    Small Methods; 2024 Jan; ():e2301247. PubMed ID: 38183406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber Lithography: A Facile Lithography Platform Based on Electromagnetic Phase Modulation Using a Highly Birefringent Electrospun Fiber.
    Kim J; Shin D; Chang J
    ACS Appl Mater Interfaces; 2020 Apr; 12(17):20056-20066. PubMed ID: 32297731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.