These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24057381)

  • 21. Dynamic, auxin-responsive plasma membrane-to-nucleus movement of Arabidopsis BRX.
    Scacchi E; Osmont KS; Beuchat J; Salinas P; Navarrete-Gómez M; Trigueros M; Ferrándiz C; Hardtke CS
    Development; 2009 Jun; 136(12):2059-67. PubMed ID: 19465596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mutant strain Arabidopsis thaliana that lacks vacuolar membrane zinc transporter MTP1 revealed the latent tolerance to excessive zinc.
    Kawachi M; Kobae Y; Mori H; Tomioka R; Lee Y; Maeshima M
    Plant Cell Physiol; 2009 Jun; 50(6):1156-70. PubMed ID: 19433490
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polar PIN localization directs auxin flow in plants.
    Wisniewska J; Xu J; Seifertová D; Brewer PB; Ruzicka K; Blilou I; Rouquié D; Benková E; Scheres B; Friml J
    Science; 2006 May; 312(5775):883. PubMed ID: 16601151
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct lytic vacuolar compartments are embedded inside the protein storage vacuole of dry and germinating Arabidopsis thaliana seeds.
    Bolte S; Lanquar V; Soler MN; Beebo A; Satiat-Jeunemaître B; Bouhidel K; Thomine S
    Plant Cell Physiol; 2011 Jul; 52(7):1142-52. PubMed ID: 21613277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Live imaging of Arabidopsis development.
    von Wangenheim D; Daum G; Lohmann JU; Stelzer EK; Maizel A
    Methods Mol Biol; 2014; 1062():539-50. PubMed ID: 24057385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy.
    Maizel A; von Wangenheim D; Federici F; Haseloff J; Stelzer EH
    Plant J; 2011 Oct; 68(2):377-85. PubMed ID: 21711399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A molecular framework for plant regeneration.
    Xu J; Hofhuis H; Heidstra R; Sauer M; Friml J; Scheres B
    Science; 2006 Jan; 311(5759):385-8. PubMed ID: 16424342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency.
    Garcia-Molina A; Andrés-Colás N; Perea-García A; Del Valle-Tascón S; Peñarrubia L; Puig S
    Plant J; 2011 Mar; 65(6):848-60. PubMed ID: 21281364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sample preparation for fluorescence imaging of the cytoskeleton in fixed and living plant roots.
    Dyachok J; Yoo CM; Palanichelvam K; Blancaflor EB
    Methods Mol Biol; 2009; 586():157-69. PubMed ID: 19768429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein.
    Saedler R; Jakoby M; Marin B; Galiana-Jaime E; Hülskamp M
    Plant J; 2009 Aug; 59(4):612-21. PubMed ID: 19392685
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots.
    Blilou I; Xu J; Wildwater M; Willemsen V; Paponov I; Friml J; Heidstra R; Aida M; Palme K; Scheres B
    Nature; 2005 Jan; 433(7021):39-44. PubMed ID: 15635403
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1.
    Song J; Lee MH; Lee GJ; Yoo CM; Hwang I
    Plant Cell; 2006 Sep; 18(9):2258-74. PubMed ID: 16905657
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Isolation of nuclear proteins.
    Calikowski TT; Meier I
    Methods Mol Biol; 2006; 323():393-402. PubMed ID: 16739594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis chromatin-associated HMGA and HMGB use different nuclear targeting signals and display highly dynamic localization within the nucleus.
    Launholt D; Merkle T; Houben A; Schulz A; Grasser KD
    Plant Cell; 2006 Nov; 18(11):2904-18. PubMed ID: 17114349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparing thin cross sections of Arabidopsis roots without embedding.
    Sotta N; Fujiwara T
    Biotechniques; 2017 Dec; 63(6):281-283. PubMed ID: 29235975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Light Sheet Fluorescence Microscopy Optimized for Long-Term Imaging of Arabidopsis Root Development.
    Baesso P; Randall RS; Sena G
    Methods Mol Biol; 2018; 1761():145-163. PubMed ID: 29525955
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence Imaging of the Cytoskeleton in Plant Roots.
    Dyachok J; Paez-Garcia A; Yoo CM; Palanichelvam K; Blancaflor EB
    Methods Mol Biol; 2016; 1365():139-53. PubMed ID: 26498783
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photobody Detection Using Immunofluorescence and Super-Resolution Imaging in Arabidopsis.
    Perrella G; Zioutopoulou A; Hamilton A; Kaiserli E
    Methods Mol Biol; 2021; 2297():7-19. PubMed ID: 33656665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing CLEM protocols for plants cells: GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots.
    Marion J; Le Bars R; Satiat-Jeunemaitre B; Boulogne C
    J Struct Biol; 2017 Jun; 198(3):196-202. PubMed ID: 28347808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Visualizing and Measuring Single Locus Dynamics in Arabidopsis thaliana.
    Meschichi A; Rosa S
    Methods Mol Biol; 2021; 2200():213-224. PubMed ID: 33175380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.