These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24058007)

  • 21. A proportional control scheme for high density force myography.
    Belyea AT; Englehart KB; Scheme EJ
    J Neural Eng; 2018 Aug; 15(4):046029. PubMed ID: 29845972
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Real-Time Task Discrimination for Myoelectric Control Employing Task-Specific Muscle Synergies.
    Rasool G; Iqbal K; Bouaynaya N; White G
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jan; 24(1):98-108. PubMed ID: 25769166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multichannel surface EMG based estimation of bilateral hand kinematics during movements at multiple degrees of freedom.
    Muceli S; Jiang N; Farina D
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():6066-9. PubMed ID: 21097125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training.
    Kamavuako EN; Farina D; Yoshida K; Jensen W
    Ann Biomed Eng; 2012 Mar; 40(3):648-56. PubMed ID: 22006428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
    Jiang N; Vujaklija I; Rehbaum H; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):549-58. PubMed ID: 24235278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Position and stiffness modulation of a wrist haptic device using myoelectric interface.
    Antuvan CW; Masia L
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():734-739. PubMed ID: 28813907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Robust extraction of basis functions for simultaneous and proportional myoelectric control via sparse non-negative matrix factorization.
    Lin C; Wang B; Jiang N; Farina D
    J Neural Eng; 2018 Apr; 15(2):026017. PubMed ID: 29076456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Myoelectric Control Performance of Two Degree of Freedom Hand-Wrist Prosthesis by Able-Bodied and Limb-Absent Subjects.
    Zhu Z; Li J; Boyd WJ; Martinez-Luna C; Dai C; Wang H; Wang H; Huang X; Farrell TR; Clancy EA
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():893-904. PubMed ID: 35349446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decoding Multi-DoF Movements Using a CST-Based Force Generation Model With Single-DoF Training.
    Xu Y; Yu Y; Zhao Z; Sheng X
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():974-982. PubMed ID: 38376978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Feasibility of using combined EMG and kinematic signals for prosthesis control: A simulation study using a virtual reality environment.
    Blana D; Kyriacou T; Lambrecht JM; Chadwick EK
    J Electromyogr Kinesiol; 2016 Aug; 29():21-7. PubMed ID: 26190031
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.
    Kamavuako EN; Scheme EJ; Englehart KB
    J Neurophysiol; 2013 Jun; 109(11):2658-65. PubMed ID: 23515790
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of three force-position hybrid control methods for a robot-based biological joint-testing system.
    Hsieh HJ; Hu CC; Lu TW; Lu HL; Kuo MY; Kuo CC; Hsu HC
    Biomed Eng Online; 2016 Jun; 15(1):62. PubMed ID: 27268070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The use of self organizing maps to evaluate myoelectric signals.
    Patterson PE; Anderson M
    Biomed Sci Instrum; 1999; 35():147-52. PubMed ID: 11143337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The function of brachioradialis.
    Boland MR; Spigelman T; Uhl TL
    J Hand Surg Am; 2008 Dec; 33(10):1853-9. PubMed ID: 19084189
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of isometric contractions based on High Density EMG maps.
    Rojas-Martínez M; Mañanas MA; Alonso JF; Merletti R
    J Electromyogr Kinesiol; 2013 Feb; 23(1):33-42. PubMed ID: 22819519
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co-contraction of the pronator teres and extensor carpi radialis during wrist extension movements in humans.
    Fujii H; Kobayashi S; Sato T; Shinozaki K; Naito A
    J Electromyogr Kinesiol; 2007 Feb; 17(1):80-9. PubMed ID: 16516494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robustness and Reliability of Synergy-Based Myocontrol of a Multiple Degree of Freedom Robotic Arm.
    Lunardini F; Casellato C; d'Avella A; Sanger TD; Pedrocchi A
    IEEE Trans Neural Syst Rehabil Eng; 2016 Sep; 24(9):940-950. PubMed ID: 26441423
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can Multi-DoF Training Improve Robustness of Muscle Synergy Inspired Myocontrollers?
    Yeung D; Farina D; Vujaklija I
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():665-670. PubMed ID: 31374707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.