These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 24058042)

  • 1. Detecting periods of eating during free-living by tracking wrist motion.
    Dong Y; Scisco J; Wilson M; Muth E; Hoover A
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1253-60. PubMed ID: 24058042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the Accuracy of a Wrist Motion Tracking Method for Counting Bites Across Demographic and Food Variables.
    Yiru Shen ; Salley J; Muth E; Hoover A
    IEEE J Biomed Health Inform; 2017 May; 21(3):599-606. PubMed ID: 28113994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the recognition of eating gestures using intergesture sequential dependencies.
    Ramos-Garcia RI; Muth ER; Gowdy JN; Hoover AW
    IEEE J Biomed Health Inform; 2015 May; 19(3):825-31. PubMed ID: 24919205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new method for measuring meal intake in humans via automated wrist motion tracking.
    Dong Y; Hoover A; Scisco J; Muth E
    Appl Psychophysiol Biofeedback; 2012 Sep; 37(3):205-15. PubMed ID: 22488204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Wrist Micromovements to Measure In-Meal Eating Behavior From Inertial Sensor Data.
    Kyritsis K; Diou C; Delopoulos A
    IEEE J Biomed Health Inform; 2019 Nov; 23(6):2325-2334. PubMed ID: 30629523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex Human Activity Recognition Using Smartphone and Wrist-Worn Motion Sensors.
    Shoaib M; Bosch S; Incel OD; Scholten H; Havinga PJ
    Sensors (Basel); 2016 Mar; 16(4):426. PubMed ID: 27023543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist.
    Biswas D; Corda D; Baldus G; Cranny A; Maharatna K; Achner J; Klemke J; Jöbges M; Ortmann S
    Physiol Meas; 2014 Sep; 35(9):1751-68. PubMed ID: 25119720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User-Independent Recognition of Sports Activities From a Single Wrist-Worn Accelerometer: A Template-Matching-Based Approach.
    Margarito J; Helaoui R; Bianchi AM; Sartor F; Bonomi AG
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):788-96. PubMed ID: 26302509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior.
    Fontana JM; Farooq M; Sazonov E
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1772-9. PubMed ID: 24845288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Analysis of Food Intake and Meal Microstructure Based on Continuous Weight Measurements.
    Papapanagiotou V; Diou C; Ioakimidis I; Sodersten P; Delopoulos A
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):893-902. PubMed ID: 29993620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Watch-Dog: Detecting Self-Harming Activities From Wrist Worn Accelerometers.
    Bharti P; Panwar A; Gopalakrishna G; Chellappan S
    IEEE J Biomed Health Inform; 2018 May; 22(3):686-696. PubMed ID: 28410113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
    Gao L; Bourke AK; Nelson J
    Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of energy intake between eating positions in a NHS hospital--a pilot study.
    Edwards JS; Hartwell HJ
    Appetite; 2004 Dec; 43(3):323-5. PubMed ID: 15527937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of periods of food intake using Support Vector Machines.
    Lopez-Meyer P; Schuckers S; Makeyev O; Sazonov E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1004-7. PubMed ID: 21096991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Top-Down Detection of Eating Episodes by Analyzing Large Windows of Wrist Motion Using a Convolutional Neural Network.
    Sharma S; Hoover A
    Bioengineering (Basel); 2022 Feb; 9(2):. PubMed ID: 35200423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Food intake monitoring: automated chew event detection in chewing sounds.
    Päßler S; Fischer WJ
    IEEE J Biomed Health Inform; 2014 Jan; 18(1):278-89. PubMed ID: 24403426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting Eating Episodes From Wrist Motion Using Daily Pattern Analysis.
    Tang Z; Patyk A; Jolly J; Goldstein SP; Thomas JG; Hoover A
    IEEE J Biomed Health Inform; 2024 Feb; 28(2):1054-1065. PubMed ID: 38079368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity classification based on inertial and barometric pressure sensors at different anatomical locations.
    Moncada-Torres A; Leuenberger K; Gonzenbach R; Luft A; Gassert R
    Physiol Meas; 2014 Jul; 35(7):1245-63. PubMed ID: 24853451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hierarchical approaches to estimate energy expenditure using phone-based accelerometers.
    Vathsangam H; Schroeder ET; Sukhatme GS
    IEEE J Biomed Health Inform; 2014 Jul; 18(4):1242-52. PubMed ID: 25014933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stomach filling may mediate the influence of dietary energy density on the food intake of free-living humans.
    de Castro JM
    Physiol Behav; 2005 Sep; 86(1-2):32-45. PubMed ID: 16115659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.