These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 24058237)

  • 1. Electroosmotic flow velocity measurements in a square microchannel.
    Hsieh SS; Lin HC; Lin CY
    Colloid Polym Sci; 2006; 284(11):1275-1286. PubMed ID: 24058237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and indirect electroosmotic flow velocity measurements in microchannels.
    Sinton D; Escobedo-Canseco C; Ren L; Li D
    J Colloid Interface Sci; 2002 Oct; 254(1):184-9. PubMed ID: 12702440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle tracking techniques for electrokinetic microchannel flows.
    Devasenathipathy S; Santiago JG; Takehara K
    Anal Chem; 2002 Aug; 74(15):3704-13. PubMed ID: 12175157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA stretching on the wall surfaces in curved microchannels with different radii.
    Hsieh SS; Wu FH; Tsai MJ
    Nanoscale Res Lett; 2014; 9(1):382. PubMed ID: 25147488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ particle zeta potential evaluation in electroosmotic flows from time-resolved microPIV measurements.
    Sureda M; Miller A; Diez FJ
    Electrophoresis; 2012 Sep; 33(17):2759-68. PubMed ID: 22965723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmotic flow in single PDMS nanochannels.
    Peng R; Li D
    Nanoscale; 2016 Jun; 8(24):12237-46. PubMed ID: 27256765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for simultaneously determining the zeta potentials of the channel surface and the tracer particles using microparticle image velocimetry technique.
    Yan D; Yang C; Nguyen NT; Huang X
    Electrophoresis; 2006 Feb; 27(3):620-7. PubMed ID: 16456891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ionic concentration gradient on electroosmotic flow mixing in a microchannel.
    Peng R; Li D
    J Colloid Interface Sci; 2015 Feb; 440():126-32. PubMed ID: 25460698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmotic flow in nanofluidic channels.
    Haywood DG; Harms ZD; Jacobson SC
    Anal Chem; 2014 Nov; 86(22):11174-80. PubMed ID: 25365680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.
    Cevheri N; Yoda M
    Electrophoresis; 2013 Jul; 34(13):1950-6. PubMed ID: 23592366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring microchannel electroosmotic mobility and zeta potential by the current monitoring method.
    Shao C; Devoe DL
    Methods Mol Biol; 2013; 949():55-63. PubMed ID: 23329435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Parametric Study of Electroosmotically Driven Flow of Power-Law Fluid in a Cylindrical Microcapillary at High Zeta Potential.
    Deng S
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel.
    Ji J; Qian S; Liu Z
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of electroosmotic flow and its application to determination of electrophoretic mobilities in a poly(vinylpyrrolidone)-coated capillary.
    Kaneta T; Ueda T; Hata K; Imasaka T
    J Chromatogr A; 2006 Feb; 1106(1-2):52-5. PubMed ID: 16443452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the Navier slip coefficient of microchannels exploiting the streaming potential.
    Park HM
    Electrophoresis; 2012 Mar; 33(6):906-15. PubMed ID: 22528410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic Flow Hysteresis for Fluids with Dissimilar pH and Ionic Species.
    Lim AE; Lam YC
    Micromachines (Basel); 2021 Aug; 12(9):. PubMed ID: 34577675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Investigation of Nanostructure Orientation on Electroosmotic Flow.
    Lim AE; Lam YC
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33138301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.