These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Numerical Study of the Time-Periodic Electroosmotic Flow of Viscoelastic Fluid through a Short Constriction Microchannel. Ji J; Qian S; Parker AM; Zhang X Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004934 [TBL] [Abstract][Full Text] [Related]
23. A method to determine zeta potential and Navier slip coefficient of microchannels. Park HM J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996 [TBL] [Abstract][Full Text] [Related]
24. Effect of ion motion on zeta-potential distribution at microchannel wall obtained from nanoscale laser-induced fluorescence. Kazoe Y; Sato Y Anal Chem; 2007 Sep; 79(17):6727-33. PubMed ID: 17668930 [TBL] [Abstract][Full Text] [Related]
25. Electroosmotic flow velocity in DNA modified nanochannels. Li J; Li D J Colloid Interface Sci; 2019 Oct; 553():31-39. PubMed ID: 31181468 [TBL] [Abstract][Full Text] [Related]
26. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations. Maynes D; Tenny J; Webbd BW; Lee ML Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632 [TBL] [Abstract][Full Text] [Related]
27. An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces. Choi DS; Yun S; Choi W Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424437 [TBL] [Abstract][Full Text] [Related]
28. Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel. Zhao C; Yang C Electrophoresis; 2013 Mar; 34(5):662-7. PubMed ID: 23229874 [TBL] [Abstract][Full Text] [Related]
29. Analysis of electroosmotic flow with step change in zeta potential. Fu LM; Lin JY; Yang RJ J Colloid Interface Sci; 2003 Feb; 258(2):266-75. PubMed ID: 12618096 [TBL] [Abstract][Full Text] [Related]
30. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography. Chen G; Tallarek U; Seidel-Morgenstern A; Zhang Y J Chromatogr A; 2004 Jul; 1044(1-2):287-94. PubMed ID: 15354450 [TBL] [Abstract][Full Text] [Related]
31. Simultaneous estimation of zeta potential and slip coefficient in hydrophobic microchannels. Park HM; Kim TW Anal Chim Acta; 2007 Jun; 593(2):171-7. PubMed ID: 17543604 [TBL] [Abstract][Full Text] [Related]
32. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
33. Electroosmotic flow in poly(dimethylsiloxane) microchannels. Bao N; Xu JJ; Zhang Q; Hang JL; Chen HY J Chromatogr A; 2005 Dec; 1099(1-2):203-6. PubMed ID: 16303131 [TBL] [Abstract][Full Text] [Related]
34. A method for determining electrophoretic and electroosmotic mobilities using AC and DC electric field particle displacements. Oddy MH; Santiago JG J Colloid Interface Sci; 2004 Jan; 269(1):192-204. PubMed ID: 14651913 [TBL] [Abstract][Full Text] [Related]
35. Unsteady electroosmosis in a microchannel with Poisson-Boltzmann charge distribution. Chang CC; Kuo CY; Wang CY Electrophoresis; 2011 Nov; 32(23):3341-7. PubMed ID: 22072500 [TBL] [Abstract][Full Text] [Related]
36. Effect of nanostructures orientation on electroosmotic flow in a microfluidic channel. Lim AE; Lim CY; Lam YC; Taboryski R; Wang SR Nanotechnology; 2017 Jun; 28(25):255303. PubMed ID: 28510536 [TBL] [Abstract][Full Text] [Related]
37. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805 [TBL] [Abstract][Full Text] [Related]
38. Scaling Law for Cross-stream Diffusion in Microchannels under Combined Electroosmotic and Pressure Driven Flow. Song H; Wang Y; Pant K Microfluid Nanofluidics; 2013 Jan; 14(1-2):371-382. PubMed ID: 23554584 [TBL] [Abstract][Full Text] [Related]
39. Analytical Solution of Time-Periodic Electroosmotic Flow through Cylindrical Microchannel with Non-Uniform Surface Potential. Khan AI; Dutta P Micromachines (Basel); 2019 Jul; 10(8):. PubMed ID: 31357437 [TBL] [Abstract][Full Text] [Related]
40. Electrokinetic-vortex formation near a two-part cylinder with same-sign zeta potentials in a straight microchannel. Wang C; Song Y; Pan X Electrophoresis; 2020 Jun; 41(10-11):793-801. PubMed ID: 32012307 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]