These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 24058488)

  • 1. Mild anastomotic stenosis in patient-specific CABG model may enhance graft patency: a new hypothesis.
    Huo Y; Luo T; Guccione JM; Teague SD; Tan W; Navia JA; Kassab GS
    PLoS One; 2013; 8(9):e73769. PubMed ID: 24058488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of top end anastomosis design on patency and flow stability in coronary artery bypass grafting.
    Koyama S; Kitamura T; Itatani K; Yamamoto T; Miyazaki S; Oka N; Nakashima K; Horai T; Ono M; Miyaji K
    Heart Vessels; 2016 May; 31(5):643-8. PubMed ID: 25910614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis.
    Wong KKL; Wu J; Liu G; Huang W; Ghista DN
    Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of graft-host diameter ratio on the hemodynamics of CABG.
    Qiao A; Liu Y
    Biomed Mater Eng; 2006; 16(3):189-201. PubMed ID: 16518018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamics of left internal mammary artery bypass graft: Effect of anastomotic geometry, coronary artery stenosis, and postoperative time.
    Fan T; Lu Y; Gao Y; Meng J; Tan W; Huo Y; Kassab GS
    J Biomech; 2016 Mar; 49(5):645-652. PubMed ID: 26900034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A parametric numerical investigation on haemodynamics in distal coronary anastomoses.
    Xiong FL; Chong CK
    Med Eng Phys; 2008 Apr; 30(3):311-20. PubMed ID: 17616426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Longer coronary anastomosis provides lower energy loss in coronary artery bypass grafting.
    Tsukui H; Shinke M; Park YK; Yamazaki K
    Heart Vessels; 2017 Jan; 32(1):83-89. PubMed ID: 27484320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel coronary artery bypass graft design of sequential anastomoses.
    Kabinejadian F; Chua LP; Ghista DN; Sankaranarayanan M; Tan YS
    Ann Biomed Eng; 2010 Oct; 38(10):3135-50. PubMed ID: 20496004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow and wall shear stress in end-to-side and side-to-side anastomosis of venous coronary artery bypass grafts.
    Frauenfelder T; Boutsianis E; Schertler T; Husmann L; Leschka S; Poulikakos D; Marincek B; Alkadhi H
    Biomed Eng Online; 2007 Sep; 6():35. PubMed ID: 17897460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation of blood flow in a sequential aorto-coronary bypass graft model.
    S M; Ghista DN; Chua LP; Seng TY
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():875-8. PubMed ID: 17945605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation and identification of susceptible sites of atherosclerotic lesion formation in a complete coronary artery bypass model.
    Zhang JM; Chua LP; Ghista DN; Yu SC; Tan YS
    Med Biol Eng Comput; 2008 Jul; 46(7):689-99. PubMed ID: 18301936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamic analysis of sequential graft from right coronary system to left coronary system.
    Wang W; Mao B; Wang H; Geng X; Zhao X; Zhang H; Xie J; Zhao Z; Lian B; Liu Y
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):132. PubMed ID: 28155686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of blood flow in an out-of-plane CABG model.
    Sankaranarayanan M; Ghista DN; Poh CL; Seng TY; Kassab GS
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H283-95. PubMed ID: 16489100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion.
    Chen HY; Moussa ID; Davidson C; Kassab GS
    J R Soc Interface; 2012 Jun; 9(71):1187-93. PubMed ID: 22112654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of hemodynamics in a complete coronary bypass with venous and arterial grafts and different degrees of stenosis.
    Alizadehghobadi S; Biglari H; Niroomand-Oscuii H; Matin MH
    Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):883-896. PubMed ID: 33307817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patient-Specific Hemodynamics of New Coronary Artery Bypass Configurations.
    Rezaeimoghaddam M; Oguz GN; Ates MS; Bozkaya TA; Piskin S; Samaneh Lashkarinia S; Tenekecioglu E; Karagoz H; Pekkan K
    Cardiovasc Eng Technol; 2020 Dec; 11(6):663-678. PubMed ID: 33051831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.