These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 24058550)

  • 1. Allosteric coupling between the intracellular coupling helix 4 and regulatory sites of the first nucleotide-binding domain of CFTR.
    Dawson JE; Farber PJ; Forman-Kay JD
    PLoS One; 2013; 8(9):e74347. PubMed ID: 24058550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Binding of the Corrector VX-809 to Human CFTR NBD1: Evidence of an Allosteric Coupling between the Binding Site and the NBD1:CL4 Interface.
    Hudson RP; Dawson JE; Chong PA; Yang Z; Millen L; Thomas PJ; Brouillette CG; Forman-Kay JD
    Mol Pharmacol; 2017 Aug; 92(2):124-135. PubMed ID: 28546419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solubilizing mutations used to crystallize one CFTR domain attenuate the trafficking and channel defects caused by the major cystic fibrosis mutation.
    Pissarra LS; Farinha CM; Xu Z; Schmidt A; Thibodeau PH; Cai Z; Thomas PJ; Sheppard DN; Amaral MD
    Chem Biol; 2008 Jan; 15(1):62-9. PubMed ID: 18215773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deletion of Phenylalanine 508 in the First Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator Increases Conformational Exchange and Inhibits Dimerization.
    Chong PA; Farber PJ; Vernon RM; Hudson RP; Mittermaier AK; Forman-Kay JD
    J Biol Chem; 2015 Sep; 290(38):22862-78. PubMed ID: 26149808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The most common cystic fibrosis-associated mutation destabilizes the dimeric state of the nucleotide-binding domains of CFTR.
    Jih KY; Li M; Hwang TC; Bompadre SG
    J Physiol; 2011 Jun; 589(Pt 11):2719-31. PubMed ID: 21486785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR evidence for differential phosphorylation-dependent interactions in WT and DeltaF508 CFTR.
    Kanelis V; Hudson RP; Thibodeau PH; Thomas PJ; Forman-Kay JD
    EMBO J; 2010 Jan; 29(1):263-77. PubMed ID: 19927121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory insertion removal restores maturation, stability and function of DeltaF508 CFTR.
    Aleksandrov AA; Kota P; Aleksandrov LA; He L; Jensen T; Cui L; Gentzsch M; Dokholyan NV; Riordan JR
    J Mol Biol; 2010 Aug; 401(2):194-210. PubMed ID: 20561529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the deltaF508 mutation in first nucleotide-binding domain of human cystic fibrosis transmembrane conductance regulator on domain folding and structure.
    Lewis HA; Zhao X; Wang C; Sauder JM; Rooney I; Noland BW; Lorimer D; Kearins MC; Conners K; Condon B; Maloney PC; Guggino WB; Hunt JF; Emtage S
    J Biol Chem; 2005 Jan; 280(2):1346-53. PubMed ID: 15528182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domain-domain associations in cystic fibrosis transmembrane conductance regulator.
    Wang W; He Z; O'Shaughnessy TJ; Rux J; Reenstra WW
    Am J Physiol Cell Physiol; 2002 May; 282(5):C1170-80. PubMed ID: 11940532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR spectroscopy to study the dynamics and interactions of CFTR.
    Kanelis V; Chong PA; Forman-Kay JD
    Methods Mol Biol; 2011; 741():377-403. PubMed ID: 21594798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural stability of purified human CFTR is systematically improved by mutations in nucleotide binding domain 1.
    Yang Z; Hildebrandt E; Jiang F; Aleksandrov AA; Khazanov N; Zhou Q; An J; Mezzell AT; Xavier BM; Ding H; Riordan JR; Senderowitz H; Kappes JC; Brouillette CG; Urbatsch IL
    Biochim Biophys Acta Biomembr; 2018 May; 1860(5):1193-1204. PubMed ID: 29425673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Severed molecules functionally define the boundaries of the cystic fibrosis transmembrane conductance regulator's NH(2)-terminal nucleotide binding domain.
    Chan KW; Csanády L; Seto-Young D; Nairn AC; Gadsby DC
    J Gen Physiol; 2000 Aug; 116(2):163-80. PubMed ID: 10919864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated biophysical studies implicate partial unfolding of NBD1 of CFTR in the molecular pathogenesis of F508del cystic fibrosis.
    Wang C; Protasevich I; Yang Z; Seehausen D; Skalak T; Zhao X; Atwell S; Spencer Emtage J; Wetmore DR; Brouillette CG; Hunt JF
    Protein Sci; 2010 Oct; 19(10):1932-47. PubMed ID: 20687163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of NBD1 thermal stability is necessary and sufficient to correct ∆F508 CFTR folding and assembly.
    He L; Aleksandrov AA; An J; Cui L; Yang Z; Brouillette CG; Riordan JR
    J Mol Biol; 2015 Jan; 427(1):106-20. PubMed ID: 25083918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices.
    Baker JM; Hudson RP; Kanelis V; Choy WY; Thibodeau PH; Thomas PJ; Forman-Kay JD
    Nat Struct Mol Biol; 2007 Aug; 14(8):738-45. PubMed ID: 17660831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator.
    Lewis HA; Buchanan SG; Burley SK; Conners K; Dickey M; Dorwart M; Fowler R; Gao X; Guggino WB; Hendrickson WA; Hunt JF; Kearins MC; Lorimer D; Maloney PC; Post KW; Rajashankar KR; Rutter ME; Sauder JM; Shriver S; Thibodeau PH; Thomas PJ; Zhang M; Zhao X; Emtage S
    EMBO J; 2004 Jan; 23(2):282-93. PubMed ID: 14685259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes relevant to channel activity and folding within the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator.
    Hudson RP; Chong PA; Protasevich II; Vernon R; Noy E; Bihler H; An JL; Kalid O; Sela-Culang I; Mense M; Senderowitz H; Brouillette CG; Forman-Kay JD
    J Biol Chem; 2012 Aug; 287(34):28480-94. PubMed ID: 22722932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-native Conformers of Cystic Fibrosis Transmembrane Conductance Regulator NBD1 Are Recognized by Hsp27 and Conjugated to SUMO-2 for Degradation.
    Gong X; Ahner A; Roldan A; Lukacs GL; Thibodeau PH; Frizzell RA
    J Biol Chem; 2016 Jan; 291(4):2004-2017. PubMed ID: 26627832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.