These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 24058871)

  • 1. Co-occurrence of tetraspanin and ROS generators: Conservation in protein cross-linking and other developmental processes.
    Moribe H; Mekada E
    Worm; 2013 Apr; 2(2):e23415. PubMed ID: 24058871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetraspanin is required for generation of reactive oxygen species by the dual oxidase system in Caenorhabditis elegans.
    Moribe H; Konakawa R; Koga D; Ushiki T; Nakamura K; Mekada E
    PLoS Genet; 2012 Sep; 8(9):e1002957. PubMed ID: 23028364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ce-Duox1/BLI-3 generates reactive oxygen species as a protective innate immune mechanism in Caenorhabditis elegans.
    Chávez V; Mohri-Shiomi A; Garsin DA
    Infect Immun; 2009 Nov; 77(11):4983-9. PubMed ID: 19687201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The BLI-3/TSP-15/DOXA-1 dual oxidase complex is required for iodide toxicity in Caenorhabditis elegans.
    Xu Z; Luo J; Li Y; Ma L
    G3 (Bethesda); 2014 Dec; 5(2):195-203. PubMed ID: 25480962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lifespan extension by peroxidase and dual oxidase-mediated ROS signaling through pyrroloquinoline quinone in
    Sasakura H; Moribe H; Nakano M; Ikemoto K; Takeuchi K; Mori I
    J Cell Sci; 2017 Aug; 130(15):2631-2643. PubMed ID: 28676501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localization of the Dual Oxidase BLI-3 and Characterization of Its NADPH Oxidase Domain during Infection of Caenorhabditis elegans.
    van der Hoeven R; Cruz MR; Chávez V; Garsin DA
    PLoS One; 2015; 10(4):e0124091. PubMed ID: 25909649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ce-Duox1/BLI-3 generated reactive oxygen species trigger protective SKN-1 activity via p38 MAPK signaling during infection in C. elegans.
    Hoeven Rv; McCallum KC; Cruz MR; Garsin DA
    PLoS Pathog; 2011 Dec; 7(12):e1002453. PubMed ID: 22216003
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox Signaling of NADPH Oxidases Regulates Oxidative Stress Responses, Immunity and Aging.
    Ewald CY
    Antioxidants (Basel); 2018 Sep; 7(10):. PubMed ID: 30274229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perturbed heme binding is responsible for the blistering phenotype associated with mutations in the Caenorhabditis elegans dual oxidase 1 (DUOX1) peroxidase domain.
    Meitzler JL; Brandman R; Ortiz de Montellano PR
    J Biol Chem; 2010 Dec; 285(52):40991-1000. PubMed ID: 20947510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine cross-linking of extracellular matrix is catalyzed by Duox, a multidomain oxidase/peroxidase with homology to the phagocyte oxidase subunit gp91phox.
    Edens WA; Sharling L; Cheng G; Shapira R; Kinkade JM; Lee T; Edens HA; Tang X; Sullards C; Flaherty DB; Benian GM; Lambeth JD
    J Cell Biol; 2001 Aug; 154(4):879-91. PubMed ID: 11514595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive oxygen species cause direct damage of Engelbreth-Holm-Swarm matrix.
    Riedle B; Kerjaschki D
    Am J Pathol; 1997 Jul; 151(1):215-31. PubMed ID: 9212747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidants in Physiological Processes.
    Knaus UG
    Handb Exp Pharmacol; 2021; 264():27-47. PubMed ID: 32767144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA.
    Hoste C; Dumont JE; Miot F; De Deken X
    Exp Cell Res; 2012 Nov; 318(18):2353-64. PubMed ID: 22814254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speculations on the activation of ROS generation in C. elegans innate immune signaling.
    van der Hoeven R; McCallum KC; Garsin DA
    Worm; 2012 Jul; 1(3):160-3. PubMed ID: 24058842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergent Evolution of Pathogen Effectors toward Reactive Oxygen Species Signaling Networks in Plants.
    Jwa NS; Hwang BK
    Front Plant Sci; 2017; 8():1687. PubMed ID: 29033963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cuticle.
    Page AP; Johnstone IL
    WormBook; 2007 Mar; ():1-15. PubMed ID: 18050497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WDR-23 and SKN-1/Nrf2 Coordinate with the BLI-3 Dual Oxidase in Response to Iodide-Triggered Oxidative Stress.
    Xu Z; Hu Y; Deng Y; Chen Y; Hua H; Huang S; Nie Q; Pan Q; Ma DK; Ma L
    G3 (Bethesda); 2018 Nov; 8(11):3515-3527. PubMed ID: 30166349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generator-specific targets of mitochondrial reactive oxygen species.
    Bleier L; Wittig I; Heide H; Steger M; Brandt U; Dröse S
    Free Radic Biol Med; 2015 Jan; 78():1-10. PubMed ID: 25451644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for specific tetraspanin homodimers: inhibition of palmitoylation makes cysteine residues available for cross-linking.
    Kovalenko OV; Yang X; Kolesnikova TV; Hemler ME
    Biochem J; 2004 Jan; 377(Pt 2):407-17. PubMed ID: 14556650
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive oxygen species generation by the ethylene-bis-dithiocarbamate (EBDC) fungicide mancozeb and its contribution to neuronal toxicity in mesencephalic cells.
    Domico LM; Cooper KR; Bernard LP; Zeevalk GD
    Neurotoxicology; 2007 Nov; 28(6):1079-91. PubMed ID: 17597214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.