BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 2405904)

  • 1. Reaction mechanism of Escherichia coli cystathionine gamma-synthase: direct evidence for a pyridoxamine derivative of vinylglyoxylate as a key intermediate in pyridoxal phosphate dependent gamma-elimination and gamma-replacement reactions.
    Brzović P; Holbrook EL; Greene RC; Dunn MF
    Biochemistry; 1990 Jan; 29(2):442-51. PubMed ID: 2405904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli cystathionine gamma-synthase does not obey ping-pong kinetics. Novel continuous assays for the elimination and substitution reactions.
    Aitken SM; Kim DH; Kirsch JF
    Biochemistry; 2003 Sep; 42(38):11297-306. PubMed ID: 14503880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies with vinylglycine and beta-haloaminobutyrates as substrates for cystathionine gamma-synthetase from Salmonella typhimurium.
    Johnston M; Marcotte P; Donovan J; Walsh C
    Biochemistry; 1979 May; 18(9):1729-38. PubMed ID: 373802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of cystathionine gamma-synthase from overproducing strains of Escherichia coli.
    Holbrook EL; Greene RC; Krueger JH
    Biochemistry; 1990 Jan; 29(2):435-42. PubMed ID: 2405903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of interaction of Escherichia coli threonine synthase with substrates and inhibitors.
    Laber B; Gerbling KP; Harde C; Neff KH; Nordhoff E; Pohlenz HD
    Biochemistry; 1994 Mar; 33(11):3413-23. PubMed ID: 7907888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methionine biosynthesis in higher plants. I. Purification and characterization of cystathionine gamma-synthase from spinach chloroplasts.
    Ravanel S; Droux M; Douce R
    Arch Biochem Biophys; 1995 Jan; 316(1):572-84. PubMed ID: 7840669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cystathionine gamma-synthase from Arabidopsis thaliana: purification and biochemical characterization of the recombinant enzyme overexpressed in Escherichia coli.
    Ravanel S; Gakière B; Job D; Douce R
    Biochem J; 1998 Apr; 331 ( Pt 2)(Pt 2):639-48. PubMed ID: 9531508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration of the active site of Escherichia coli cystathionine γ-synthase.
    Jaworski AF; Lodha PH; Manders AL; Aitken SM
    Protein Sci; 2012 Nov; 21(11):1662-71. PubMed ID: 22855027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of cystathionine gamma-synthase from Nicotiana tabacum reveals its substrate and reaction specificity.
    Steegborn C; Messerschmidt A; Laber B; Streber W; Huber R; Clausen T
    J Mol Biol; 1999 Jul; 290(5):983-96. PubMed ID: 10438597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection and identification of intermediates in the reaction of L-serine with Escherichia coli tryptophan synthase via rapid-scanning ultraviolet-visible spectroscopy.
    Drewe WF; Dunn MF
    Biochemistry; 1985 Jul; 24(15):3977-87. PubMed ID: 3931672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A role for glutamate-333 of Saccharomyces cerevisiae cystathionine γ-lyase as a determinant of specificity.
    Hopwood EM; Ahmed D; Aitken SM
    Biochim Biophys Acta; 2014 Feb; 1844(2):465-72. PubMed ID: 24291053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suicide inactivation of bacterial cystathionine gamma-synthase and methionine gamma-lyase during processing of L-propargylglycine.
    Johnston M; Jankowski D; Marcotte P; Tanaka H; Esaki N; Soda K; Walsh C
    Biochemistry; 1979 Oct; 18(21):4690-701. PubMed ID: 387077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic studies on reactions of bacterial methionine gamma-lyase with olefinic amino acids.
    Johnston M; Raines R; Chang M; Esaki N; Soda K; Walsh C
    Biochemistry; 1981 Jul; 20(15):4325-33. PubMed ID: 7284328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Escherichia coli cystathionine gamma-synthase at 1.5 A resolution.
    Clausen T; Huber R; Prade L; Wahl MC; Messerschmidt A
    EMBO J; 1998 Dec; 17(23):6827-38. PubMed ID: 9843488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A change in the internal aldimine lysine (K42) in O-acetylserine sulfhydrylase to alanine indicates its importance in transimination and as a general base catalyst.
    Rege VD; Kredich NM; Tai CH; Karsten WE; Schnackerz KD; Cook PF
    Biochemistry; 1996 Oct; 35(41):13485-93. PubMed ID: 8873618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of the quinonoid intermediate in the reaction catalyzed by aspartate aminotransferase with cysteine sulfinic acid.
    Furumo NC; Kirsch JF
    Arch Biochem Biophys; 1995 May; 319(1):49-54. PubMed ID: 7771805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stereochemistry and mechanism of a new single-turnover, half-transamination reaction catalyzed by the tryptophan synthase alpha 2 beta 2 complex.
    Miles EW
    Biochemistry; 1987 Jan; 26(2):597-603. PubMed ID: 3548822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of the aminocrotonate intermediate limits the rate of gamma-elimination reaction catalyzed by L-cystathionine gamma-lyase of the yeast Saccharomyces cerevisiae.
    Yamagata S; Yasugahira T; Okuda Y; Iwama T
    J Biochem; 2003 Oct; 134(4):607-13. PubMed ID: 14607989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pyridoxal-phosphate-dependent enzymes exclusively catalyzing reactions of beta-replacement.
    Braunstein AE; Goryachenkova EV
    Biochimie; 1976; 58(1-2):5-17. PubMed ID: 782560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threonine synthase of Escherichia coli: inhibition by classical and slow-binding analogues of homoserine phosphate.
    Farrington GK; Kumar A; Shames SL; Ewaskiewicz JI; Ash DE; Wedler FC
    Arch Biochem Biophys; 1993 Nov; 307(1):165-74. PubMed ID: 7902068
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.