BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24059241)

  • 1. Thioflavin-S staining of bacterial inclusion bodies for the fast, simple, and inexpensive screening of amyloid aggregation inhibitors.
    Pouplana S; Espargaro A; Galdeano C; Viayna E; Sola I; Ventura S; Muñoz-Torrero D; Sabate R
    Curr Med Chem; 2014; 21(9):1152-9. PubMed ID: 24059241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioflavin-S staining coupled to flow cytometry. A screening tool to detect in vivo protein aggregation.
    Espargaró A; Sabate R; Ventura S
    Mol Biosyst; 2012 Nov; 8(11):2839-44. PubMed ID: 22868714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast and specific method to screen for intracellular amyloid inhibitors using bacterial model systems.
    Navarro S; Carija A; Muñoz-Torrero D; Ventura S
    Eur J Med Chem; 2016 Oct; 121():785-792. PubMed ID: 26608003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-Amyloid Drug Screening Methods Using Bacterial Inclusion Bodies.
    Caballero AB; Gamez P; Sabate R; Espargaró A
    Methods Mol Biol; 2022; 2538():165-188. PubMed ID: 35951300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial Inclusion Bodies for Anti-Amyloid Drug Discovery: Current and Future Screening Methods.
    Caballero AB; Espargaró A; Pont C; Busquets MA; Estelrich J; Muñoz-Torrero D; Gamez P; Sabate R
    Curr Protein Pept Sci; 2019; 20(6):563-576. PubMed ID: 30924417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo amyloid aggregation kinetics tracked by time-lapse confocal microscopy in real-time.
    Villar-Piqué A; Espargaró A; Ventura S; Sabate R
    Biotechnol J; 2016 Jan; 11(1):172-7. PubMed ID: 26580000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using bacterial inclusion bodies to screen for amyloid aggregation inhibitors.
    Villar-Piqué A; Espargaró A; Sabaté R; de Groot NS; Ventura S
    Microb Cell Fact; 2012 May; 11():55. PubMed ID: 22553999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Robust and Efficient Production and Purification Procedure of Recombinant Alzheimers Disease Methionine-Modified Amyloid-β Peptides.
    Hoarau M; Malbert Y; Irague R; Hureau C; Faller P; Gras E; André I; Remaud-Siméon M
    PLoS One; 2016; 11(8):e0161209. PubMed ID: 27532547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra rapid in vivo screening for anti-Alzheimer anti-amyloid drugs.
    Espargaró A; Medina A; Di Pietro O; Muñoz-Torrero D; Sabate R
    Sci Rep; 2016 Mar; 6():23349. PubMed ID: 27000658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inclusion bodies: specificity in their aggregation process and amyloid-like structure.
    Morell M; Bravo R; Espargaró A; Sisquella X; Avilés FX; Fernàndez-Busquets X; Ventura S
    Biochim Biophys Acta; 2008 Oct; 1783(10):1815-25. PubMed ID: 18619498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent dye ProteoStat to detect and discriminate intracellular amyloid-like aggregates in Escherichia coli.
    Navarro S; Ventura S
    Biotechnol J; 2014 Oct; 9(10):1259-66. PubMed ID: 25112199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacterial inclusion bodies of Alzheimer's disease β-amyloid peptides can be employed to study native-like aggregation intermediate states.
    Dasari M; Espargaro A; Sabate R; Lopez del Amo JM; Fink U; Grelle G; Bieschke J; Ventura S; Reif B
    Chembiochem; 2011 Feb; 12(3):407-23. PubMed ID: 21290543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method of predicting the in vitro fibril formation propensity of Aβ40 mutants based on their inclusion body levels in E. coli.
    Sanagavarapu K; Nüske E; Nasir I; Meisl G; Immink JN; Sormanni P; Vendruscolo M; Knowles TPJ; Malmendal A; Cabaleiro-Lago C; Linse S
    Sci Rep; 2019 Mar; 9(1):3680. PubMed ID: 30842594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amyloid-like properties of bacterial inclusion bodies.
    Carrió M; González-Montalbán N; Vera A; Villaverde A; Ventura S
    J Mol Biol; 2005 Apr; 347(5):1025-37. PubMed ID: 15784261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amyloid Pan-inhibitors: One Family of Compounds To Cope with All Conformational Diseases.
    Espargaró A; Pont C; Gamez P; Muñoz-Torrero D; Sabate R
    ACS Chem Neurosci; 2019 Mar; 10(3):1311-1317. PubMed ID: 30380841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein aggregation propensity is a crucial determinant of intracellular inclusion formation and quality control degradation.
    Villar-Piqué A; Ventura S
    Biochim Biophys Acta; 2013 Dec; 1833(12):2714-2724. PubMed ID: 23856334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.
    Wang X; Zhou B; Hu W; Zhao Q; Lin Z
    Microb Cell Fact; 2015 Jun; 14():88. PubMed ID: 26077447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and thermodynamic stability of bacterial intracellular aggregates.
    Espargaró A; Sabaté R; Ventura S
    FEBS Lett; 2008 Oct; 582(25-26):3669-73. PubMed ID: 18840434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ monitoring Alzheimer's disease β-amyloid aggregation and screening of Aβ inhibitors using a perylene probe.
    Li M; Zhao C; Yang X; Ren J; Xu C; Qu X
    Small; 2013 Jan; 9(1):52-5. PubMed ID: 22976818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genistein: A Dual Inhibitor of Both Amyloid β and Human Islet Amylin Peptides.
    Ren B; Liu Y; Zhang Y; Cai Y; Gong X; Chang Y; Xu L; Zheng J
    ACS Chem Neurosci; 2018 May; 9(5):1215-1224. PubMed ID: 29432676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.