These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 24059258)

  • 1. Zinc coordination spheres in protein structures.
    Laitaoja M; Valjakka J; Jänis J
    Inorg Chem; 2013 Oct; 52(19):10983-91. PubMed ID: 24059258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of zinc-ligand bond lengths in metalloproteins: trends and patterns.
    Tamames B; Sousa SF; Tamames J; Fernandes PA; Ramos MJ
    Proteins; 2007 Nov; 69(3):466-75. PubMed ID: 17623850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Zinc proteome: a tale of stability and functionality.
    Sousa SF; Lopes AB; Fernandes PA; Ramos MJ
    Dalton Trans; 2009 Oct; (38):7946-56. PubMed ID: 19771357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation and correction of Zn-Cys
    Touw WG; van Beusekom B; Evers JM; Vriend G; Joosten RP
    Acta Crystallogr D Struct Biol; 2016 Oct; 72(Pt 10):1110-1118. PubMed ID: 27710932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triple-stranded helicates of zinc(II) and cadmium(II) involving a new redox-active multiring nitrogenous heterocyclic ligand: synthesis, structure, and electrochemical and photophysical properties.
    Kundu N; Abtab SM; Kundu S; Endo A; Teat SJ; Chaudhury M
    Inorg Chem; 2012 Feb; 51(4):2652-61. PubMed ID: 22280476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cys(x)His(y)-Zn2+ interactions: thiol vs. thiolate coordination.
    Simonson T; Calimet N
    Proteins; 2002 Oct; 49(1):37-48. PubMed ID: 12211014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New perspectives of zinc coordination environments in proteins.
    Maret W
    J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites.
    Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR
    Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes.
    Pettinari C; Marinelli A; Marchetti F; Ngoune J; Galindo A; Álvarez E; Gómez M
    Inorg Chem; 2010 Nov; 49(22):10543-56. PubMed ID: 20964418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carboxylate shift in zinc enzymes: a computational study.
    Sousa SF; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2007 Feb; 129(5):1378-85. PubMed ID: 17263422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination of Cu2+ ions to C2 symmetric pseudopeptides derived from valine.
    Blasco S; Burguete MI; Clares MP; García-España E; Escorihuela J; Luis SV
    Inorg Chem; 2010 Sep; 49(17):7841-52. PubMed ID: 20681616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.
    Dokmanić I; Sikić M; Tomić S
    Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides.
    Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR
    J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of zinc binding sites in protein crystal structures.
    Alberts IL; Nadassy K; Wodak SJ
    Protein Sci; 1998 Aug; 7(8):1700-16. PubMed ID: 10082367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study.
    Williams NJ; Gan W; Reibenspies JH; Hancock RD
    Inorg Chem; 2009 Feb; 48(4):1407-15. PubMed ID: 19143497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries.
    Szunyogh D; Gyurcsik B; Larsen FH; Stachura M; Thulstrup PW; Hemmingsen L; Jancsó A
    Dalton Trans; 2015 Jul; 44(28):12576-88. PubMed ID: 26040991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry.
    Franks M; Gadzhieva A; Ghandhi L; Murrell D; Blake AJ; Davies ES; Lewis W; Moro F; McMaster J; Schröder M
    Inorg Chem; 2013 Jan; 52(2):660-70. PubMed ID: 23297765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands.
    Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T
    Dalton Trans; 2008 Nov; (42):5754-65. PubMed ID: 18941663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants.
    Guo J; Giedroc DP
    Biochemistry; 1997 Jan; 36(4):730-42. PubMed ID: 9020770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.