These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. New perspectives of zinc coordination environments in proteins. Maret W J Inorg Biochem; 2012 Jun; 111():110-6. PubMed ID: 22196021 [TBL] [Abstract][Full Text] [Related]
8. Femtomolar Zn(II) affinity in a peptide-based ligand designed to model thiolate-rich metalloprotein active sites. Petros AK; Reddi AR; Kennedy ML; Hyslop AG; Gibney BR Inorg Chem; 2006 Dec; 45(25):9941-58. PubMed ID: 17140191 [TBL] [Abstract][Full Text] [Related]
9. Synthesis and coordination chemistry of two N2-donor chelating di(indazolyl)methane ligands: structural characterization and comparison of their metal chelation aptitudes. Pettinari C; Marinelli A; Marchetti F; Ngoune J; Galindo A; Álvarez E; Gómez M Inorg Chem; 2010 Nov; 49(22):10543-56. PubMed ID: 20964418 [TBL] [Abstract][Full Text] [Related]
10. The carboxylate shift in zinc enzymes: a computational study. Sousa SF; Fernandes PA; Ramos MJ J Am Chem Soc; 2007 Feb; 129(5):1378-85. PubMed ID: 17263422 [TBL] [Abstract][Full Text] [Related]
11. Coordination of Cu2+ ions to C2 symmetric pseudopeptides derived from valine. Blasco S; Burguete MI; Clares MP; García-España E; Escorihuela J; Luis SV Inorg Chem; 2010 Sep; 49(17):7841-52. PubMed ID: 20681616 [TBL] [Abstract][Full Text] [Related]
12. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination. Dokmanić I; Sikić M; Tomić S Acta Crystallogr D Biol Crystallogr; 2008 Mar; 64(Pt 3):257-63. PubMed ID: 18323620 [TBL] [Abstract][Full Text] [Related]
13. Deducing the energetic cost of protein folding in zinc finger proteins using designed metallopeptides. Reddi AR; Guzman TR; Breece RM; Tierney DL; Gibney BR J Am Chem Soc; 2007 Oct; 129(42):12815-27. PubMed ID: 17902663 [TBL] [Abstract][Full Text] [Related]
14. Analysis of zinc binding sites in protein crystal structures. Alberts IL; Nadassy K; Wodak SJ Protein Sci; 1998 Aug; 7(8):1700-16. PubMed ID: 10082367 [TBL] [Abstract][Full Text] [Related]
15. Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study. Williams NJ; Gan W; Reibenspies JH; Hancock RD Inorg Chem; 2009 Feb; 48(4):1407-15. PubMed ID: 19143497 [TBL] [Abstract][Full Text] [Related]
16. Zn(II) and Hg(II) binding to a designed peptide that accommodates different coordination geometries. Szunyogh D; Gyurcsik B; Larsen FH; Stachura M; Thulstrup PW; Hemmingsen L; Jancsó A Dalton Trans; 2015 Jul; 44(28):12576-88. PubMed ID: 26040991 [TBL] [Abstract][Full Text] [Related]
17. Five coordinate M(II)-diphenolate [M = Zn(II), Ni(II), and Cu(II)] Schiff base complexes exhibiting metal- and ligand-based redox chemistry. Franks M; Gadzhieva A; Ghandhi L; Murrell D; Blake AJ; Davies ES; Lewis W; Moro F; McMaster J; Schröder M Inorg Chem; 2013 Jan; 52(2):660-70. PubMed ID: 23297765 [TBL] [Abstract][Full Text] [Related]
18. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity. Lesburg CA; Huang C; Christianson DW; Fierke CA Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308 [TBL] [Abstract][Full Text] [Related]
19. Zn(ii), Cd(ii) and Pb(ii) complexation with pyridinecarboxylate containing ligands. Ferreirós-Martínez R; Esteban-Gómez D; Platas-Iglesias C; de Blas A; Rodríguez-Blas T Dalton Trans; 2008 Nov; (42):5754-65. PubMed ID: 18941663 [TBL] [Abstract][Full Text] [Related]
20. Zinc site redesign in T4 gene 32 protein: structure and stability of cobalt(II) complexes formed by wild-type and metal ligand substitution mutants. Guo J; Giedroc DP Biochemistry; 1997 Jan; 36(4):730-42. PubMed ID: 9020770 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]