BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

466 related articles for article (PubMed ID: 24059451)

  • 1. Sensitive single particle method for characterizing rapid rotational and translational diffusion and aspect ratio of anisotropic nanoparticles and its application in immunoassays.
    Zhang B; Lan T; Huang X; Dong C; Ren J
    Anal Chem; 2013 Oct; 85(20):9433-8. PubMed ID: 24059451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single particle technique for one-step homogeneous detection of cancer marker using gold nanoparticle probes.
    Lan T; Dong C; Huang X; Ren J
    Analyst; 2011 Oct; 136(20):4247-53. PubMed ID: 21879036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Light-Scattering Correlation Spectroscopy and Its Application in Analytical Chemistry for Life Science.
    Dong C; Ren J
    Acc Chem Res; 2023 Oct; 56(19):2582-2594. PubMed ID: 37706459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size Distribution of Nanoparticles in Solution Characterized by Combining Resonance Light Scattering Correlation Spectroscopy with the Maximum Entropy Method.
    Zhang B; Liu H; Huang X; Dong C; Ren J
    Anal Chem; 2017 Nov; 89(22):12609-12616. PubMed ID: 29076722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging translational and rotational diffusion of single anisotropic nanoparticles with planar illumination microscopy.
    Xiao L; Qiao Y; He Y; Yeung ES
    J Am Chem Soc; 2011 Jul; 133(27):10638-45. PubMed ID: 21678933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive, universal and homogeneous method for determination of biomarkers in biofluids by resonance light scattering correlation spectroscopy (RLSCS).
    Lan T; Dong C; Huang X; Ren J
    Talanta; 2013 Nov; 116():501-7. PubMed ID: 24148436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.
    Liu H; Dong C; Ren J
    J Am Chem Soc; 2014 Feb; 136(7):2775-85. PubMed ID: 24460214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous immunoassays by using photon burst counting technique of single gold nanoparticles.
    Lan T; Wang J; Dong C; Huang X; Ren J
    Talanta; 2015 Jan; 132():698-704. PubMed ID: 25476367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays.
    Xie C; Xu F; Huang X; Dong C; Ren J
    J Am Chem Soc; 2009 Sep; 131(35):12763-70. PubMed ID: 19678640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive homogenous immunoassay of cancer biomarker using silver nanoparticles enhanced fluorescence correlation spectroscopy.
    Tang L; Dong C; Ren J
    Talanta; 2010 Jun; 81(4-5):1560-7. PubMed ID: 20441939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging.
    He H; Xie C; Ren J
    Anal Chem; 2008 Aug; 80(15):5951-7. PubMed ID: 18590338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Assay of Proteins Incorporated with Unnatural Amino Acids in Single Living Cells by Differenced Resonance Light Scattering Correlation Spectroscopy.
    Xu J; Liu Y; Li F; Deng L; Dong C; Ren J
    Anal Chem; 2021 Jul; 93(27):9329-9336. PubMed ID: 34171193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved scattering correlation spectroscopy using a total internal reflection configuration.
    Liu H; Dong C; Huang X; Ren J
    Anal Chem; 2012 Apr; 84(8):3561-7. PubMed ID: 22443085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous immunoassay based on aggregation of antibody-functionalized gold nanoparticles coupled with light scattering detection.
    Du B; Li Z; Cheng Y
    Talanta; 2008 May; 75(4):959-64. PubMed ID: 18585169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hot brownian particles and photothermal correlation spectroscopy.
    Radünz R; Rings D; Kroy K; Cichos F
    J Phys Chem A; 2009 Mar; 113(9):1674-7. PubMed ID: 19209897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of spectral anisotropy of gold nanoparticles.
    Cang H; Montiel D; Xu CS; Yang H
    J Chem Phys; 2008 Jul; 129(4):044503. PubMed ID: 18681656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, solution-based characterization of optimized SERS nanoparticle substrates.
    Laurence TA; Braun G; Talley C; Schwartzberg A; Moskovits M; Reich N; Huser T
    J Am Chem Soc; 2009 Jan; 131(1):162-9. PubMed ID: 19063599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging.
    Zhan Q; Qian J; Li X; He S
    Nanotechnology; 2010 Feb; 21(5):055704. PubMed ID: 20023304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles.
    Reddy NK; Pérez-Juste J; Pastoriza-Santos I; Lang PR; Dhont JK; Liz-Marzán LM; Vermant J
    ACS Nano; 2011 Jun; 5(6):4935-44. PubMed ID: 21545088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.