BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

468 related articles for article (PubMed ID: 24059451)

  • 21. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Noise-free dual-wavelength difference imaging of plasmonic resonant nanoparticles in living cells.
    Xiao L; Wei L; Cheng X; He Y; Yeung ES
    Anal Chem; 2011 Oct; 83(19):7340-7. PubMed ID: 21902279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold nanorods as probes in two-photon fluorescence correlation spectroscopy: emerging applications and potential artifacts.
    Wang DS; Wei SC; Liao SC; Lin CW
    Microsc Res Tech; 2013 Sep; 76(9):882-9. PubMed ID: 23749499
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic light scattering as a powerful tool for gold nanoparticle bioconjugation and biomolecular binding studies.
    Jans H; Liu X; Austin L; Maes G; Huo Q
    Anal Chem; 2009 Nov; 81(22):9425-32. PubMed ID: 19803497
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrodynamic properties of magnetic nanoparticles with tunable shape anisotropy: prediction and experimental verification.
    Martchenko I; Dietsch H; Moitzi C; Schurtenberger P
    J Phys Chem B; 2011 Dec; 115(49):14838-45. PubMed ID: 21985450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction and Operation of a Light-driven Gold Nanorod Rotary Motor System.
    Andrén D; Karpinski P; Käll M
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fast protein detection using absorption properties of gold nanoparticles.
    Nietzold C; Lisdat F
    Analyst; 2012 Jun; 137(12):2821-6. PubMed ID: 22569135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyper-Rayleigh scattering from gold nanoparticles: effect of size and shape.
    Das K; Uppal A; Saini RK; Varshney GK; Mondal P; Gupta PK
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():398-402. PubMed ID: 24682054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Can the light scattering depolarization ratio of small particles be greater than 1/3?
    Khlebtsov NG; Melnikov AG; Bogatyrev VA; Dykman LA; Alekseeva AV; Trachuk LA; Khlebtsov BN
    J Phys Chem B; 2005 Jul; 109(28):13578-84. PubMed ID: 16852700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous measurement of rotational and translational diffusion of anisotropic colloids with a new integrated setup for fluorescence recovery after photobleaching.
    Kuipers BW; van de Ven MC; Baars RJ; Philipse AP
    J Phys Condens Matter; 2012 Jun; 24(24):245101. PubMed ID: 22569199
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods.
    Pylaev TE; Khanadeev VA; Khlebtsov BN; Dykman LA; Bogatyrev VA; Khlebtsov NG
    Nanotechnology; 2011 Jul; 22(28):285501. PubMed ID: 21625041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic studies of conformational changes of β-lactoglobulin adsorbed on gold nanoparticle surfaces.
    Winuprasith T; Suphantharika M; McClements DJ; He L
    J Colloid Interface Sci; 2014 Feb; 416():184-9. PubMed ID: 24370420
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of hydrodynamic properties of bare gold and silver nanoparticles as a fluorescent probe using its surface-plasmon-induced photoluminescence by fluorescence correlation spectroscopy.
    Prashanthi S; Lanke SR; Kumar PH; Siva D; Bangal PR
    Appl Spectrosc; 2012 Jul; 66(7):835-41. PubMed ID: 22710248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elemental mercury vapor interaction with individual gold nanorods.
    James JZ; Lucas D; Koshland CP
    Analyst; 2013 Apr; 138(8):2323-8. PubMed ID: 23446550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications.
    Fairbairn N; Christofidou A; Kanaras AG; Newman TA; Muskens OL
    Phys Chem Chem Phys; 2013 Mar; 15(12):4163-8. PubMed ID: 23183927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing the Protein Corona of Nanoparticles in a Fluid Flow by Single-Particle Differenced Resonance Light Scattering Correlation Spectroscopy.
    Zhang T; Dong C; Ren J
    Anal Chem; 2023 Jan; ():. PubMed ID: 36607829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Griess reaction-based paper strip for colorimetric/fluorescent/SERS triple sensing of nitrite.
    Li D; Ma Y; Duan H; Deng W; Li D
    Biosens Bioelectron; 2018 Jan; 99():389-398. PubMed ID: 28806669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging.
    Gao J; Huang X; Liu H; Zan F; Ren J
    Langmuir; 2012 Mar; 28(9):4464-71. PubMed ID: 22276658
    [TBL] [Abstract][Full Text] [Related]  

  • 40. White light scattering spectroscopy and electron microscopy of laser induced melting in single gold nanorods.
    Zijlstra P; Chon JW; Gu M
    Phys Chem Chem Phys; 2009 Jul; 11(28):5915-21. PubMed ID: 19588013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.