These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 24059522)

  • 1. GAPDH: the missing link between glycolysis and mitochondrial oxidative phosphorylation?
    Ramzan R; Weber P; Linne U; Vogt S
    Biochem Soc Trans; 2013 Oct; 41(5):1294-7. PubMed ID: 24059522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenylephrine protects cardiomyocytes from starvation-induced apoptosis by increasing glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activity.
    Yao LL; Wang YG; Liu XJ; Zhou Y; Li N; Liu J; Zhu YC
    J Cell Physiol; 2012 Oct; 227(10):3518-27. PubMed ID: 22252379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degenerative diseases, oxidative stress and cytochrome c oxidase function.
    Kadenbach B; Ramzan R; Vogt S
    Trends Mol Med; 2009 Apr; 15(4):139-47. PubMed ID: 19303362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ischemic preconditioning results in an ATP-dependent inhibition of cytochrome C oxidase.
    Vogt S; Ramzan R; Weber P; Troitzsch D; Rhiel A; Sattler A; Irqsusi M; Ruppert V; Moosdorf R
    Shock; 2013 Nov; 40(5):407-13. PubMed ID: 23867523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel effect of oxidized low-density lipoprotein: cellular ATP depletion via downregulation of glyceraldehyde-3-phosphate dehydrogenase.
    Sukhanov S; Higashi Y; Shai SY; Itabe H; Ono K; Parthasarathy S; Delafontaine P
    Circ Res; 2006 Jul; 99(2):191-200. PubMed ID: 16778134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revisiting Kadenbach: Electron flux rate through cytochrome c-oxidase determines the ATP-inhibitory effect and subsequent production of ROS.
    Vogt S; Rhiel A; Weber P; Ramzan R
    Bioessays; 2016 Jun; 38(6):556-67. PubMed ID: 27171124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome c Oxidase Inhibition by ATP Decreases Mitochondrial ROS Production.
    Ramzan R; Dolga AM; Michels S; Weber P; Culmsee C; Rastan AJ; Vogt S
    Cells; 2022 Mar; 11(6):. PubMed ID: 35326443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glycolysis inhibition on mitochondrial function in rat brain.
    Cano-Ramírez D; Torres-Vargas CE; Guerrero-Castillo S; Uribe-Carvajal S; Hernández-Pando R; Pedraza-Chaverri J; Orozco-Ibarra M
    J Biochem Mol Toxicol; 2012 May; 26(5):206-11. PubMed ID: 22539072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of energy-producing pathways of HepG2 cells by 3-bromopyruvate.
    Pereira da Silva AP; El-Bacha T; Kyaw N; dos Santos RS; da-Silva WS; Almeida FC; Da Poian AT; Galina A
    Biochem J; 2009 Feb; 417(3):717-26. PubMed ID: 18945211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased oxidative stress during glycolytic inhibition enables maintenance of ATP production and astrocytic survival.
    Nodin C; Zhu C; Blomgren K; Nilsson M; Blomstrand F
    Neurochem Int; 2012 Aug; 61(3):291-301. PubMed ID: 22634249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholate Disrupts Regulatory Functions of Cytochrome c Oxidase.
    Ramzan R; Napiwotzki J; Weber P; Kadenbach B; Vogt S
    Cells; 2021 Jun; 10(7):. PubMed ID: 34201437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase.
    Lee I; Bender E; Kadenbach B
    Mol Cell Biochem; 2002; 234-235(1-2):63-70. PubMed ID: 12162461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions.
    Hwang NR; Yim SH; Kim YM; Jeong J; Song EJ; Lee Y; Lee JH; Choi S; Lee KJ
    Biochem J; 2009 Sep; 423(2):253-64. PubMed ID: 19650766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cytochrome c oxidase contributes to health and optimal life.
    Kadenbach B
    World J Biol Chem; 2020 Sep; 11(2):52-61. PubMed ID: 33024517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of mitochondrial membrane potential in ischemic heart failure.
    Kadenbach B; Ramzan R; Moosdorf R; Vogt S
    Mitochondrion; 2011 Sep; 11(5):700-6. PubMed ID: 21703366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial cytochrome c oxidase: mechanism of action and role in regulating oxidative phosphorylation.
    Wilson DF; Vinogradov SA
    J Appl Physiol (1985); 2014 Dec; 117(12):1431-9. PubMed ID: 25324518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New control of mitochondrial membrane potential and ROS formation--a hypothesis.
    Lee I; Bender E; Arnold S; Kadenbach B
    Biol Chem; 2001 Dec; 382(12):1629-36. PubMed ID: 11843176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of mitochondrial oxidative stress in astrocytes by nitric oxide precedes disruption of energy metabolism.
    Jacobson J; Duchen MR; Hothersall J; Clark JB; Heales SJ
    J Neurochem; 2005 Oct; 95(2):388-95. PubMed ID: 16104850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial cytochrome c oxidase and control of energy metabolism: measurements in suspensions of isolated mitochondria.
    Wilson DF; Harrison DK; Vinogradov A
    J Appl Physiol (1985); 2014 Dec; 117(12):1424-30. PubMed ID: 25324517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation.
    Davila MP; Muñoz PM; Bolaños JM; Stout TA; Gadella BM; Tapia JA; da Silva CB; Ferrusola CO; Peña FJ
    Reproduction; 2016 Dec; 152(6):683-694. PubMed ID: 27798283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.