BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 24059527)

  • 1. Molecular mechanism and physiological role of active-deactive transition of mitochondrial complex I.
    Babot M; Galkin A
    Biochem Soc Trans; 2013 Oct; 41(5):1325-30. PubMed ID: 24059527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation.
    Dröse S; Stepanova A; Galkin A
    Biochim Biophys Acta; 2016 Jul; 1857(7):946-57. PubMed ID: 26777588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ND3 Cys39 in complex I is exposed during mitochondrial respiration.
    Burger N; James AM; Mulvey JF; Hoogewijs K; Ding S; Fearnley IM; Loureiro-López M; Norman AAI; Arndt S; Mottahedin A; Sauchanka O; Hartley RC; Krieg T; Murphy MP
    Cell Chem Biol; 2022 Apr; 29(4):636-649.e14. PubMed ID: 34739852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I.
    Galkin A; Meyer B; Wittig I; Karas M; Schägger H; Vinogradov A; Brandt U
    J Biol Chem; 2008 Jul; 283(30):20907-13. PubMed ID: 18502755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ND3, ND1 and 39kDa subunits are more exposed in the de-active form of bovine mitochondrial complex I.
    Babot M; Labarbuta P; Birch A; Kee S; Fuszard M; Botting CH; Wittig I; Heide H; Galkin A
    Biochim Biophys Acta; 2014 Jun; 1837(6):929-39. PubMed ID: 24560811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterisation of the active/de-active transition of mitochondrial complex I.
    Babot M; Birch A; Labarbuta P; Galkin A
    Biochim Biophys Acta; 2014 Jul; 1837(7):1083-92. PubMed ID: 24569053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the Deactive State of Mammalian Respiratory Complex I.
    Blaza JN; Vinothkumar KR; Hirst J
    Structure; 2018 Feb; 26(2):312-319.e3. PubMed ID: 29395787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide radical formation by pure complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica.
    Galkin A; Brandt U
    J Biol Chem; 2005 Aug; 280(34):30129-35. PubMed ID: 15985426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S-nitrosation of mitochondrial complex I depends on its structural conformation.
    Galkin A; Moncada S
    J Biol Chem; 2007 Dec; 282(52):37448-53. PubMed ID: 17956863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational change of mitochondrial complex I increases ROS sensitivity during ischemia.
    Gorenkova N; Robinson E; Grieve DJ; Galkin A
    Antioxid Redox Signal; 2013 Nov; 19(13):1459-68. PubMed ID: 23419200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy conversion, redox catalysis and generation of reactive oxygen species by respiratory complex I.
    Hirst J; Roessler MM
    Biochim Biophys Acta; 2016 Jul; 1857(7):872-83. PubMed ID: 26721206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism.
    Yang Y; Yamashita T; Nakamaru-Ogiso E; Hashimoto T; Murai M; Igarashi J; Miyoshi H; Mori N; Matsuno-Yagi A; Yagi T; Kosaka H
    J Biol Chem; 2011 Mar; 286(11):9287-97. PubMed ID: 21220430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The deactive form of respiratory complex I from mammalian mitochondria is a Na+/H+ antiporter.
    Roberts PG; Hirst J
    J Biol Chem; 2012 Oct; 287(41):34743-51. PubMed ID: 22854968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain.
    Stepanova A; Konrad C; Guerrero-Castillo S; Manfredi G; Vannucci S; Arnold S; Galkin A
    J Cereb Blood Flow Metab; 2019 Sep; 39(9):1790-1802. PubMed ID: 29629602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.
    Orr AL; Ashok D; Sarantos MR; Shi T; Hughes RE; Brand MD
    Free Radic Biol Med; 2013 Dec; 65():1047-1059. PubMed ID: 23994103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges in elucidating structure and mechanism of proton pumping NADH:ubiquinone oxidoreductase (complex I).
    Zickermann V; Dröse S; Tocilescu MA; Zwicker K; Kerscher S; Brandt U
    J Bioenerg Biomembr; 2008 Oct; 40(5):475-83. PubMed ID: 18982432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial complex I.
    Hirst J
    Annu Rev Biochem; 2013; 82():551-75. PubMed ID: 23527692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deactivation of mitochondrial NADH:ubiquinone oxidoreductase (respiratory complex I): Extrinsically affecting factors.
    Grivennikova VG; Gladyshev GV; Vinogradov AD
    Biochim Biophys Acta Bioenerg; 2020 Aug; 1861(8):148207. PubMed ID: 32315625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reverse Electron Transfer by Respiratory Complex I Catalyzed in a Modular Proteoliposome System.
    Wright JJ; Biner O; Chung I; Burger N; Bridges HR; Hirst J
    J Am Chem Soc; 2022 Apr; 144(15):6791-6801. PubMed ID: 35380814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting state of respiratory Complex I from Escherichia coli.
    Belevich N; Verkhovskaya M
    FEBS Lett; 2016 Jun; 590(11):1570-5. PubMed ID: 27148945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.