BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24059586)

  • 1. Covalent binding and anchoring of cytochrome c to mitochondrial mimetic membranes promoted by cholesterol carboxyaldehyde.
    Genaro-Mattos TC; Appolinário PP; Mugnol KC; Bloch C; Nantes IL; Di Mascio P; Miyamoto S
    Chem Res Toxicol; 2013 Oct; 26(10):1536-44. PubMed ID: 24059586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome c reacts with cholesterol hydroperoxides to produce lipid- and protein-derived radicals.
    Genaro-Mattos TC; Queiroz RF; Cunha D; Appolinario PP; Di Mascio P; Nantes IL; Augusto O; Miyamoto S
    Biochemistry; 2015 May; 54(18):2841-50. PubMed ID: 25865416
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model.
    Pinto IFD; Chaves-Filho AB; Cunha DD; Miyamoto S
    Arch Biochem Biophys; 2020 Oct; 693():108568. PubMed ID: 32888909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent modification of cytochrome c exposed to trans,trans-2,4-decadienal.
    Sigolo CA; Di Mascio P; Medeiros MH
    Chem Res Toxicol; 2007 Aug; 20(8):1099-110. PubMed ID: 17658762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorylation of Cytochrome c Threonine 28 Regulates Electron Transport Chain Activity in Kidney: IMPLICATIONS FOR AMP KINASE.
    Mahapatra G; Varughese A; Ji Q; Lee I; Liu J; Vaishnav A; Sinkler C; Kapralov AA; Moraes CT; Sanderson TH; Stemmler TL; Grossman LI; Kagan VE; Brunzelle JS; Salomon AR; Edwards BF; Hüttemann M
    J Biol Chem; 2017 Jan; 292(1):64-79. PubMed ID: 27758862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of cardiolipin in palmitate-treated GL15 glioblastoma cells favors cytochrome c release from mitochondria leading to apoptosis.
    Buratta M; Castigli E; Sciaccaluga M; Pellegrino RM; Spinozzi F; Roberti R; Corazzi L
    J Neurochem; 2008 May; 105(3):1019-31. PubMed ID: 18182042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Serine-47 phosphorylation of cytochrome
    Kalpage HA; Vaishnav A; Liu J; Varughese A; Wan J; Turner AA; Ji Q; Zurek MP; Kapralov AA; Kagan VE; Brunzelle JS; Recanati MA; Grossman LI; Sanderson TH; Lee I; Salomon AR; Edwards BFP; Hüttemann M
    FASEB J; 2019 Dec; 33(12):13503-13514. PubMed ID: 31570002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiolipin-cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein.
    Ascenzi P; Coletta M; Wilson MT; Fiorucci L; Marino M; Polticelli F; Sinibaldi F; Santucci R
    IUBMB Life; 2015 Feb; 67(2):98-109. PubMed ID: 25857294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of respiratory cytochromes in liposomes.
    Nantes IL; Kawai C; Pessoto FS; Mugnol KC
    Methods Mol Biol; 2010; 606():147-65. PubMed ID: 20013396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cytochrome c phosphorylation: Control of mitochondrial electron transport chain flux and apoptosis.
    Kalpage HA; Wan J; Morse PT; Zurek MP; Turner AA; Khobeir A; Yazdi N; Hakim L; Liu J; Vaishnav A; Sanderson TH; Recanati MA; Grossman LI; Lee I; Edwards BFP; Hüttemann M
    Int J Biochem Cell Biol; 2020 Apr; 121():105704. PubMed ID: 32023432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphomimetic substitution of cytochrome C tyrosine 48 decreases respiration and binding to cardiolipin and abolishes ability to trigger downstream caspase activation.
    Pecina P; Borisenko GG; Belikova NA; Tyurina YY; Pecinova A; Lee I; Samhan-Arias AK; Przyklenk K; Kagan VE; Hüttemann M
    Biochemistry; 2010 Aug; 49(31):6705-14. PubMed ID: 20586425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilized cytochrome c bound to cardiolipin exhibits peculiar oxidation state-dependent axial heme ligation and catalytically reduces dioxygen.
    Ranieri A; Millo D; Di Rocco G; Battistuzzi G; Bortolotti CA; Borsari M; Sola M
    J Biol Inorg Chem; 2015 Apr; 20(3):531-40. PubMed ID: 25627142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. pH-sensitive binding of cytochrome c to the inner mitochondrial membrane. Implications for the participation of the protein in cell respiration and apoptosis.
    Kawai C; Pessoto FS; Rodrigues T; Mugnol KC; Tórtora V; Castro L; Milícchio VA; Tersariol IL; Di Mascio P; Radi R; Carmona-Ribeiro AM; Nantes IL
    Biochemistry; 2009 Sep; 48(35):8335-42. PubMed ID: 19650668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanobacterial cytochrome c(M): probing its role as electron donor for Cu(A) of cytochrome c oxidase.
    Bernroitner M; Tangl D; Lucini C; Furtmüller PG; Peschek GA; Obinger C
    Biochim Biophys Acta; 2009 Mar; 1787(3):135-43. PubMed ID: 19138661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome-c-assisted escape of cardiolipin from a model mitochondrial membrane.
    Thong A; Tsoukanova V
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):475-480. PubMed ID: 29113818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reductive nitrosylation of the cardiolipin-ferric cytochrome c complex.
    Ascenzi P; Marino M; Ciaccio C; Santucci R; Coletta M
    IUBMB Life; 2014 Jun; 66(6):438-47. PubMed ID: 24979722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lysine 53 Acetylation of Cytochrome
    Bazylianska V; Kalpage HA; Wan J; Vaishnav A; Mahapatra G; Turner AA; Chowdhury DD; Kim K; Morse PT; Lee I; Brunzelle JS; Polin L; Subedi P; Heath EI; Podgorski I; Marcus K; Edwards BFP; Hüttemann M
    Cells; 2021 Apr; 10(4):. PubMed ID: 33916826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Respiration and Apoptosis by Cytochrome c Threonine 58 Phosphorylation.
    Wan J; Kalpage HA; Vaishnav A; Liu J; Lee I; Mahapatra G; Turner AA; Zurek MP; Ji Q; Moraes CT; Recanati MA; Grossman LI; Salomon AR; Edwards BFP; Hüttemann M
    Sci Rep; 2019 Nov; 9(1):15815. PubMed ID: 31676852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome c, a hub linking energy, redox, stress and signaling pathways in mitochondria and other cell compartments.
    Welchen E; Gonzalez DH
    Physiol Plant; 2016 Jul; 157(3):310-21. PubMed ID: 27080474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholestane-3beta,5alpha,6beta-triol-induced reactive oxygen species production promotes mitochondrial dysfunction in isolated mice liver mitochondria.
    Liu H; Wang T; Huang K
    Chem Biol Interact; 2009 May; 179(2-3):81-7. PubMed ID: 19121293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.