These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 24059595)

  • 1. Design and implementation of frequency-following response recording system.
    Gong Q; Xu Q; Sun W
    Int J Audiol; 2013 Dec; 52(12):824-31. PubMed ID: 24059595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlation between the frequency difference limen and an index based on principal component analysis of the frequency-following response of normal hearing listeners.
    Zhang X; Gong Q
    Hear Res; 2017 Feb; 344():255-264. PubMed ID: 27956352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early maturation of frequency-following responses to voice pitch in infants with normal hearing.
    Jeng FC; Schnabel EA; Dickman BM; Hu J; Li X; Lin CD; Chung HK
    Percept Mot Skills; 2010 Dec; 111(3):765-84. PubMed ID: 21319616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of two algorithms for detecting human frequency-following responses to voice pitch.
    Jeng FC; Hu J; Dickman B; Lin CY; Lin CD; Wang CY; Chung HK; Li X
    Int J Audiol; 2011 Jan; 50(1):14-26. PubMed ID: 21047294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural representation of pitch salience in the human brainstem revealed by psychophysical and electrophysiological indices.
    Krishnan A; Bidelman GM; Gandour JT
    Hear Res; 2010 Sep; 268(1-2):60-6. PubMed ID: 20457239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noise tolerance in human frequency-following responses to voice pitch.
    Li X; Jeng FC
    J Acoust Soc Am; 2011 Jan; 129(1):EL21-6. PubMed ID: 21302977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dichotic phase effects on frequency following responses reveal phase variant and invariant harmonic distortion products.
    Gnanateja GN; Maruthy S
    Hear Res; 2019 Sep; 380():84-99. PubMed ID: 31212114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences between auditory frequency-following responses and onset responses: Intracranial evidence from rat inferior colliculus.
    Wang Q; Li L
    Hear Res; 2018 Jan; 357():25-32. PubMed ID: 29156225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of static and dynamic iterated rippled noise to evaluate pitch encoding in the human auditory brainstem.
    Swaminathan J; Krishnan A; Gandour JT; Xu Y
    IEEE Trans Biomed Eng; 2008 Jan; 55(1):281-7. PubMed ID: 18232372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Encoding of pitch in the human brainstem is sensitive to language experience.
    Krishnan A; Xu Y; Gandour J; Cariani P
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):161-8. PubMed ID: 15935624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Individual Differences in the Frequency-Following Response: Relation to Pitch Perception.
    Coffey EB; Colagrosso EM; Lehmann A; Schönwiesner M; Zatorre RJ
    PLoS One; 2016; 11(3):e0152374. PubMed ID: 27015271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Putative measure of peripheral and brainstem frequency-following in humans.
    Galbraith GC; Threadgill MR; Hemsley J; Salour K; Songdej N; Ton J; Cheung L
    Neurosci Lett; 2000 Oct; 292(2):123-7. PubMed ID: 10998564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Reflection of the characteristics of acoustic signals in the summary synchronized responses of neurons of the auditory system of the cat].
    Radionova EA
    Neirofiziologiia; 1987; 19(1):67-74. PubMed ID: 3574554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective listening of concurrent auditory stimuli: an event-related potential study.
    Rao A; Zhang Y; Miller S
    Hear Res; 2010 Sep; 268(1-2):123-32. PubMed ID: 20595021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relation between the human frequency-following response and the low pitch of complex tones.
    Chambers RD; Feth LL; Burns EM
    J Acoust Soc Am; 1986 Dec; 80(6):1673-80. PubMed ID: 3794073
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sound frequency representation in cat auditory cortex.
    Tsytsarev V; Yamazaki T; Ribot J; Tanaka S
    Neuroimage; 2004 Dec; 23(4):1246-55. PubMed ID: 15589090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detectability of newborn chirp-evoked ABR in the frequency domain at different stimulus rates.
    Cebulla M; Stürzebecher E
    Int J Audiol; 2013 Oct; 52(10):698-705. PubMed ID: 23808682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A quantitative analysis of spectral mechanisms involved in auditory detection of coloration by a single wall reflection.
    Buchholz JM
    Hear Res; 2011 Jul; 277(1-2):192-203. PubMed ID: 21236325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sorted averaging improves quality of auditory steady-state responses.
    Rahne T; Verhey JL; Mühler R
    J Neurosci Methods; 2013 May; 216(1):28-32. PubMed ID: 23603663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcortical representation of musical dyads: individual differences and neural generators.
    Bones O; Plack CJ
    Hear Res; 2015 May; 323():9-21. PubMed ID: 25636498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.