BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24059643)

  • 1. Tunable nucleation time of functional sphingomyelinase--lipid features studied by membrane array statistic tool.
    Lin CY; Chao L
    Langmuir; 2013 Oct; 29(42):13008-17. PubMed ID: 24059643
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane.
    Holopainen JM; Subramanian M; Kinnunen PK
    Biochemistry; 1998 Dec; 37(50):17562-70. PubMed ID: 9860872
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers.
    Härtel S; Fanani ML; Maggio B
    Biophys J; 2005 Jan; 88(1):287-304. PubMed ID: 15489298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingomyelinase-induced phase transformations: causing morphology switches and multiple-time-domain ceramide generation in model raft membranes.
    Chao L; Gast AP; Hatton TA; Jensen KF
    Langmuir; 2010 Jan; 26(1):344-56. PubMed ID: 19863058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers.
    Fanani ML; Härtel S; Oliveira RG; Maggio B
    Biophys J; 2002 Dec; 83(6):3416-24. PubMed ID: 12496108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid raft composition modulates sphingomyelinase activity and ceramide-induced membrane physical alterations.
    Silva LC; Futerman AH; Prieto M
    Biophys J; 2009 Apr; 96(8):3210-22. PubMed ID: 19383465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes.
    Contreras FX; Basañez G; Alonso A; Herrmann A; Goñi FM
    Biophys J; 2005 Jan; 88(1):348-59. PubMed ID: 15465865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingomyelinase acts by an area-activated mechanism on the liquid-expanded phase of sphingomyelin monolayers.
    De Tullio L; Maggio B; Fanani ML
    J Lipid Res; 2008 Nov; 49(11):2347-55. PubMed ID: 18509194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid bilayers containing sphingomyelins and ceramides of varying N-acyl lengths: a glimpse into sphingolipid complexity.
    Jiménez-Rojo N; García-Arribas AB; Sot J; Alonso A; Goñi FM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):456-64. PubMed ID: 24144542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sphingomyelinase generation of ceramide promotes clustering of nanoscale domains in supported bilayer membranes.
    Ira ; Johnston LJ
    Biochim Biophys Acta; 2008 Jan; 1778(1):185-97. PubMed ID: 17988649
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of ceramide-enriched domains in lipid particles enhances the binding of apolipoprotein E.
    Morita SY; Nakano M; Sakurai A; Deharu Y; Vertut-Doï A; Handa T
    FEBS Lett; 2005 Mar; 579(7):1759-64. PubMed ID: 15757672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingomyelinase cleavage of sphingomyelin in pure and mixed lipid membranes. Influence of the physical state of the sphingolipid.
    Ruiz-Argüello MB; Veiga MP; Arrondo JL; Goñi FM; Alonso A
    Chem Phys Lipids; 2002 Jan; 114(1):11-20. PubMed ID: 11841822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sphingomyelinase-Mediated Multitimescale Clustering of Ganglioside GM1 in Heterogeneous Lipid Membranes.
    Lee HR; Choi SQ
    Adv Sci (Weinh); 2021 Oct; 8(20):e2101766. PubMed ID: 34473415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered-disordered domain coexistence in ternary lipid monolayers activates sphingomyelinase by clearing ceramide from the active phase.
    Ale EC; Maggio B; Fanani ML
    Biochim Biophys Acta; 2012 Nov; 1818(11):2767-76. PubMed ID: 22763279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implication of sphingomyelin/ceramide molar ratio on the biological activity of sphingomyelinase.
    Boulgaropoulos B; Amenitsch H; Laggner P; Pabst G
    Biophys J; 2010 Jul; 99(2):499-506. PubMed ID: 20643068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial regulation of bacterial sphingomyelinase activity.
    Jungner M; Ohvo H; Slotte JP
    Biochim Biophys Acta; 1997 Feb; 1344(3):230-40. PubMed ID: 9059513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemolysis induced by Bacillus cereus sphingomyelinase.
    Oda M; Takahashi M; Matsuno T; Uoo K; Nagahama M; Sakurai J
    Biochim Biophys Acta; 2010 Jun; 1798(6):1073-80. PubMed ID: 20214877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymatic generation of ceramide induces membrane restructuring: Correlated AFM and fluorescence imaging of supported bilayers.
    Ira ; Zou S; Ramirez DM; Vanderlip S; Ogilvie W; Jakubek ZJ; Johnston LJ
    J Struct Biol; 2009 Oct; 168(1):78-89. PubMed ID: 19348948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingomyelin regulates the transbilayer movement of diacylglycerol in the plasma membrane of Madin-Darby canine kidney cells.
    Ueda Y; Makino A; Murase-Tamada K; Sakai S; Inaba T; Hullin-Matsuda F; Kobayashi T
    FASEB J; 2013 Aug; 27(8):3284-97. PubMed ID: 23682124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual modulation of sphingomyelinase and phospholipase A2 activities against mixed lipid monolayers by their lipid intermediates and glycosphingolipids.
    Fanani ML; Maggio B
    Mol Membr Biol; 1997; 14(1):25-9. PubMed ID: 9160338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.