These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 24059857)

  • 1. Context-sensitive adjustment of cognitive control in dual-task performance.
    Fischer R; Gottschalk C; Dreisbach G
    J Exp Psychol Learn Mem Cogn; 2014 Mar; 40(2):399-416. PubMed ID: 24059857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Working-memory-triggered dynamic adjustments in cognitive control.
    Jha AP; Kiyonaga A
    J Exp Psychol Learn Mem Cogn; 2010 Jul; 36(4):1036-42. PubMed ID: 20565219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-task interference: attentional and neurophysiological influences.
    Hiraga CY; Garry MI; Carson RG; Summers JJ
    Behav Brain Res; 2009 Dec; 205(1):10-8. PubMed ID: 19631693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Context-sensitive adjustments of cognitive control: conflict-adaptation effects are modulated by processing demands of the ongoing task.
    Fischer R; Dreisbach G; Goschke T
    J Exp Psychol Learn Mem Cogn; 2008 May; 34(3):712-8. PubMed ID: 18444768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-visual spatial tasks reveal increased interactions with stance postural control.
    Woollacott M; Vander Velde T
    Brain Res; 2008 May; 1208():95-102. PubMed ID: 18394592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Context-specific adjustment of cognitive control: Transfer of adaptive control sets.
    Surrey C; Dreisbach G; Fischer R
    Q J Exp Psychol (Hove); 2017 Nov; 70(11):2386-2401. PubMed ID: 27696936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep thinking increases task-set shielding and reduces shifting flexibility in dual-task performance.
    Fischer R; Hommel B
    Cognition; 2012 May; 123(2):303-7. PubMed ID: 22336726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying flexible adaptation of cognitive control: behavioral and neuroimaging evidence in a flanker task.
    Zurawska Vel Grajewska B; Sim EJ; Hoenig K; Herrnberger B; Kiefer M
    Brain Res; 2011 Nov; 1421():52-65. PubMed ID: 21981803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do tasks matter in task switching? Dissociating domain-general from context-specific brain activity.
    Muhle-Karbe PS; De Baene W; Brass M
    Neuroimage; 2014 Oct; 99():332-41. PubMed ID: 24875143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual-motor interactions during action observation are shaped by cognitive context.
    Bortoletto M; Baker KS; Mattingley JB; Cunnington R
    J Cogn Neurosci; 2013 Nov; 25(11):1794-806. PubMed ID: 23767924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting high levels of multitasking reduces between-tasks interactions.
    Fischer R; Dreisbach G
    J Exp Psychol Hum Percept Perform; 2015 Dec; 41(6):1482-7. PubMed ID: 26480246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unconscious activation of task sets.
    Reuss H; Kiesel A; Kunde W; Hommel B
    Conscious Cogn; 2011 Sep; 20(3):556-67. PubMed ID: 21396830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contextual adjustments in cognitive control across tasks.
    Freitas AL; Bahar M; Yang S; Banai R
    Psychol Sci; 2007 Dec; 18(12):1040-3. PubMed ID: 18031409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shielding and relaxation in multitasking: Prospect of reward counteracts relaxation of task shielding in multitasking.
    Fischer R; Fröber K; Dreisbach G
    Acta Psychol (Amst); 2018 Nov; 191():112-123. PubMed ID: 30245307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.
    Katus T; Andersen SK; Müller MM
    Cereb Cortex; 2014 Mar; 24(3):707-18. PubMed ID: 23172773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebral-cortical networking and activation increase as a function of cognitive-motor task difficulty.
    Rietschel JC; Miller MW; Gentili RJ; Goodman RN; McDonald CG; Hatfield BD
    Biol Psychol; 2012 May; 90(2):127-33. PubMed ID: 22410264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive control: a role for implicit learning?
    Deroost N; Vandenbossche J; Zeischka P; Coomans D; Soetens E
    J Exp Psychol Learn Mem Cogn; 2012 Sep; 38(5):1243-58. PubMed ID: 22428719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of preparation on dual-task performance in postural control.
    Müller ML; Jennings JR; Redfern MS; Furman JM
    J Mot Behav; 2004 Jun; 36(2):137-46. PubMed ID: 15130865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generic cognitive adaptations to task interference in task switching.
    Poljac E; Bekkering H
    Acta Psychol (Amst); 2009 Nov; 132(3):279-85. PubMed ID: 19733342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.