These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
325 related articles for article (PubMed ID: 24059975)
1. Development and field validation of an indicator to assess the relative mobility and risk of pesticides in the Lourens River catchment, South Africa. Dabrowski JM; Balderacchi M Chemosphere; 2013 Nov; 93(10):2433-43. PubMed ID: 24059975 [TBL] [Abstract][Full Text] [Related]
2. Comparison of spray drift- and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa. Schulz R Chemosphere; 2001 Nov; 45(4-5):543-51. PubMed ID: 11680750 [TBL] [Abstract][Full Text] [Related]
3. Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa. Thiere G; Schulz R Water Res; 2004 Jul; 38(13):3092-102. PubMed ID: 15261548 [TBL] [Abstract][Full Text] [Related]
4. Seasonal changes of macroinvertebrate communities in a Western cape river, South Africa, receiving nonpoint-source insecticide pollution. Bollmohr S; Schulz R Environ Toxicol Chem; 2009 Apr; 28(4):809-17. PubMed ID: 19391685 [TBL] [Abstract][Full Text] [Related]
5. Rainfall-induced sediment and pesticide input from orchards into the Lourens River, Western Cape, South Africa: importance of a single event. Schulz R Water Res; 2001 Jun; 35(8):1869-76. PubMed ID: 11337831 [TBL] [Abstract][Full Text] [Related]
6. Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination. Dabrowski JM; Peall SK; Van Niekerk A; Reinecke AJ; Day JA; Schulz R Water Res; 2002 Dec; 36(20):4975-84. PubMed ID: 12448545 [TBL] [Abstract][Full Text] [Related]
7. Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa: comparison of runoff and spray drift. Dabrowski JM; Schulz R Environ Toxicol Chem; 2003 Mar; 22(3):494-500. PubMed ID: 12627634 [TBL] [Abstract][Full Text] [Related]
8. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Stehle S; Dabrowski JM; Bangert U; Schulz R Sci Total Environ; 2016 Mar; 545-546():171-83. PubMed ID: 26745303 [TBL] [Abstract][Full Text] [Related]
9. Temporal variability in particle-associated pesticide exposure in a temporarily open estuary, Western Cape, South Africa. Bollmohr S; Day JA; Schulz R Chemosphere; 2007 Jun; 68(3):479-88. PubMed ID: 17287007 [TBL] [Abstract][Full Text] [Related]
10. Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale. Bereswill R; Streloke M; Schulz R Integr Environ Assess Manag; 2014 Apr; 10(2):286-98. PubMed ID: 24431010 [TBL] [Abstract][Full Text] [Related]
11. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer. Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353 [TBL] [Abstract][Full Text] [Related]
12. Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka. Aravinna P; Priyantha N; Pitawala A; Yatigammana SK J Environ Sci Health B; 2017 Jan; 52(1):37-47. PubMed ID: 27754814 [TBL] [Abstract][Full Text] [Related]
13. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring. Tani K; Matsui Y; Iwao K; Kamata M; Matsushita T Water Res; 2012 Mar; 46(3):741-9. PubMed ID: 22154284 [TBL] [Abstract][Full Text] [Related]
14. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations. Phillips PJ; Bode RW Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325 [TBL] [Abstract][Full Text] [Related]
15. Interactive effect of salinity decrease, salinity adaptation, and chlorpyrifos exposure on an estuarine harpacticoid copepod, Mesochra parva, in South Africa. Bollmohr S; Schulz R; Hahn T Ecotoxicol Environ Saf; 2009 Mar; 72(3):756-64. PubMed ID: 19081627 [TBL] [Abstract][Full Text] [Related]
16. Kresoxim methyl deposition, drift and runoff in a vineyard catchment. Lefrancq M; Imfeld G; Payraudeau S; Millet M Sci Total Environ; 2013 Jan; 442():503-8. PubMed ID: 23201604 [TBL] [Abstract][Full Text] [Related]
17. Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Rämö RA; van den Brink PJ; Ruepert C; Castillo LE; Gunnarsson JS Environ Sci Pollut Res Int; 2018 May; 25(14):13254-13269. PubMed ID: 27617335 [TBL] [Abstract][Full Text] [Related]
18. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa. Dalvie MA; Cairncross E; Solomon A; London L Environ Health; 2003 Mar; 2(1):1. PubMed ID: 12689341 [TBL] [Abstract][Full Text] [Related]
19. The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa. Reinecke SA; Reinecke AJ Ecotoxicol Environ Saf; 2007 Feb; 66(2):244-51. PubMed ID: 16318873 [TBL] [Abstract][Full Text] [Related]
20. Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk. Tang XY; Yang Y; Tam NF; Tao R; Dai YN Environ Sci Pollut Res Int; 2019 Feb; 26(4):3569-3577. PubMed ID: 30523525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]