BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 24059975)

  • 1. Development and field validation of an indicator to assess the relative mobility and risk of pesticides in the Lourens River catchment, South Africa.
    Dabrowski JM; Balderacchi M
    Chemosphere; 2013 Nov; 93(10):2433-43. PubMed ID: 24059975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of spray drift- and runoff-related input of azinphos-methyl and endosulfan from fruit orchards into the Lourens River, South Africa.
    Schulz R
    Chemosphere; 2001 Nov; 45(4-5):543-51. PubMed ID: 11680750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Runoff-related agricultural impact in relation to macroinvertebrate communities of the Lourens River, South Africa.
    Thiere G; Schulz R
    Water Res; 2004 Jul; 38(13):3092-102. PubMed ID: 15261548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seasonal changes of macroinvertebrate communities in a Western cape river, South Africa, receiving nonpoint-source insecticide pollution.
    Bollmohr S; Schulz R
    Environ Toxicol Chem; 2009 Apr; 28(4):809-17. PubMed ID: 19391685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rainfall-induced sediment and pesticide input from orchards into the Lourens River, Western Cape, South Africa: importance of a single event.
    Schulz R
    Water Res; 2001 Jun; 35(8):1869-76. PubMed ID: 11337831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting runoff-induced pesticide input in agricultural sub-catchment surface waters: linking catchment variables and contamination.
    Dabrowski JM; Peall SK; Van Niekerk A; Reinecke AJ; Day JA; Schulz R
    Water Res; 2002 Dec; 36(20):4975-84. PubMed ID: 12448545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicted and measured levels of azinphosmethyl in the Lourens River, South Africa: comparison of runoff and spray drift.
    Dabrowski JM; Schulz R
    Environ Toxicol Chem; 2003 Mar; 22(3):494-500. PubMed ID: 12627634
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters.
    Stehle S; Dabrowski JM; Bangert U; Schulz R
    Sci Total Environ; 2016 Mar; 545-546():171-83. PubMed ID: 26745303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal variability in particle-associated pesticide exposure in a temporarily open estuary, Western Cape, South Africa.
    Bollmohr S; Day JA; Schulz R
    Chemosphere; 2007 Jun; 68(3):479-88. PubMed ID: 17287007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk mitigation measures for diffuse pesticide entry into aquatic ecosystems: proposal of a guide to identify appropriate measures on a catchment scale.
    Bereswill R; Streloke M; Schulz R
    Integr Environ Assess Manag; 2014 Apr; 10(2):286-98. PubMed ID: 24431010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a GIS-based indicator for environmental pesticide exposure and its application to a Belgian case-control study on bladder cancer.
    Cornelis C; Schoeters G; Kellen E; Buntinx F; Zeegers M
    Int J Hyg Environ Health; 2009 Mar; 212(2):172-85. PubMed ID: 18768353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use pattern of pesticides and their predicted mobility into shallow groundwater and surface water bodies of paddy lands in Mahaweli river basin in Sri Lanka.
    Aravinna P; Priyantha N; Pitawala A; Yatigammana SK
    J Environ Sci Health B; 2017 Jan; 52(1):37-47. PubMed ID: 27754814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selecting analytical target pesticides in monitoring: Sensitivity analysis and scoring.
    Tani K; Matsui Y; Iwao K; Kamata M; Matsushita T
    Water Res; 2012 Mar; 46(3):741-9. PubMed ID: 22154284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pesticides in surface water runoff in south-eastern New York State, USA: seasonal and stormflow effects on concentrations.
    Phillips PJ; Bode RW
    Pest Manag Sci; 2004 Jun; 60(6):531-43. PubMed ID: 15198325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactive effect of salinity decrease, salinity adaptation, and chlorpyrifos exposure on an estuarine harpacticoid copepod, Mesochra parva, in South Africa.
    Bollmohr S; Schulz R; Hahn T
    Ecotoxicol Environ Saf; 2009 Mar; 72(3):756-64. PubMed ID: 19081627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kresoxim methyl deposition, drift and runoff in a vineyard catchment.
    Lefrancq M; Imfeld G; Payraudeau S; Millet M
    Sci Total Environ; 2013 Jan; 442():503-8. PubMed ID: 23201604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models.
    Rämö RA; van den Brink PJ; Ruepert C; Castillo LE; Gunnarsson JS
    Environ Sci Pollut Res Int; 2018 May; 25(14):13254-13269. PubMed ID: 27617335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contamination of rural surface and ground water by endosulfan in farming areas of the Western Cape, South Africa.
    Dalvie MA; Cairncross E; Solomon A; London L
    Environ Health; 2003 Mar; 2(1):1. PubMed ID: 12689341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The impact of organophosphate pesticides in orchards on earthworms in the Western Cape, South Africa.
    Reinecke SA; Reinecke AJ
    Ecotoxicol Environ Saf; 2007 Feb; 66(2):244-51. PubMed ID: 16318873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticides in three rural rivers in Guangzhou, China: spatiotemporal distribution and ecological risk.
    Tang XY; Yang Y; Tam NF; Tao R; Dai YN
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3569-3577. PubMed ID: 30523525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.