BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24060058)

  • 1. Genome-wide transcriptional response of Trichoderma reesei to lignocellulose using RNA sequencing and comparison with Aspergillus niger.
    Ries L; Pullan ST; Delmas S; Malla S; Blythe MJ; Archer DB
    BMC Genomics; 2013 Aug; 14():541. PubMed ID: 24060058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei.
    Borin GP; Sanchez CC; de Santana ES; Zanini GK; Dos Santos RAC; de Oliveira Pontes A; de Souza AT; Dal'Mas RMMTS; Riaño-Pachón DM; Goldman GH; Oliveira JVC
    BMC Genomics; 2017 Jun; 18(1):501. PubMed ID: 28666414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptomic responses of mixed cultures of ascomycete fungi to lignocellulose using dual RNA-seq reveal inter-species antagonism and limited beneficial effects on CAZyme expression.
    Daly P; van Munster JM; Kokolski M; Sang F; Blythe MJ; Malla S; Velasco de Castro Oliveira J; Goldman GH; Archer DB
    Fungal Genet Biol; 2017 May; 102():4-21. PubMed ID: 27150814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in
    Pullan ST; Daly P; Delmas S; Ibbett R; Kokolski M; Neiteler A; van Munster JM; Wilson R; Blythe MJ; Gaddipati S; Tucker GA; Archer DB
    Fungal Biol Biotechnol; 2014; 1():3. PubMed ID: 28955445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA-sequencing reveals the complexities of the transcriptional response to lignocellulosic biofuel substrates in
    Pullan ST; Daly P; Delmas S; Ibbett R; Kokolski M; Neiteler A; van Munster JM; Wilson R; Blythe MJ; Gaddipati S; Tucker GA; Archer DB
    Fungal Biol Biotechnol; 2014 Nov; 1(1):1-14. PubMed ID: 26457194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncovering the genome-wide transcriptional responses of the filamentous fungus Aspergillus niger to lignocellulose using RNA sequencing.
    Delmas S; Pullan ST; Gaddipati S; Kokolski M; Malla S; Blythe MJ; Ibbett R; Campbell M; Liddell S; Aboobaker A; Tucker GA; Archer DB
    PLoS Genet; 2012; 8(8):e1002875. PubMed ID: 22912594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass.
    Borin GP; Sanchez CC; de Souza AP; de Santana ES; de Souza AT; Paes Leme AF; Squina FM; Buckeridge M; Goldman GH; Oliveira JV
    PLoS One; 2015; 10(6):e0129275. PubMed ID: 26053961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.
    van den Brink J; Maitan-Alfenas GP; Zou G; Wang C; Zhou Z; Guimarães VM; de Vries RP
    Biotechnol J; 2014 Oct; 9(10):1329-38. PubMed ID: 25116172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-annotation of the CAZy genes of Trichoderma reesei and transcription in the presence of lignocellulosic substrates.
    Häkkinen M; Arvas M; Oja M; Aro N; Penttilä M; Saloheimo M; Pakula TM
    Microb Cell Fact; 2012 Oct; 11():134. PubMed ID: 23035824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.
    Jiang Y; Duarte AV; van den Brink J; Wiebenga A; Zou G; Wang C; de Vries RP; Zhou Z; Benoit I
    Biotechnol Lett; 2016 Jan; 38(1):65-70. PubMed ID: 26354856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and functional characterization of novel xylose transporters from the cell factories Aspergillus niger and Trichoderma reesei.
    Sloothaak J; Tamayo-Ramos JA; Odoni DI; Laothanachareon T; Derntl C; Mach-Aigner AR; Martins Dos Santos VAP; Schaap PJ
    Biotechnol Biofuels; 2016; 9():148. PubMed ID: 27446237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Secretome Analysis of Aspergillus niger, Trichoderma reesei, and Penicillium oxalicum During Solid-State Fermentation.
    Gong W; Zhang H; Liu S; Zhang L; Gao P; Chen G; Wang L
    Appl Biochem Biotechnol; 2015 Nov; 177(6):1252-71. PubMed ID: 26319683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of carbon starvation in the induction of enzymes that degrade plant-derived carbohydrates in Aspergillus niger.
    van Munster JM; Daly P; Delmas S; Pullan ST; Blythe MJ; Malla S; Kokolski M; Noltorp ECM; Wennberg K; Fetherston R; Beniston R; Yu X; Dupree P; Archer DB
    Fungal Genet Biol; 2014 Nov; 72():34-47. PubMed ID: 24792495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes.
    Sperandio GB; Filho EXF
    Appl Microbiol Biotechnol; 2021 Apr; 105(8):3019-3025. PubMed ID: 33825000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis.
    Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR
    Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-solid-state fermentation of Eicchornia crassipes biomass as lignocellulosic biopolymer for cellulase and 3-glucosidase production by cocultivation of Aspergillus niger RK3 and Trichoderma reesei MTCC164.
    Kumar R; Singh RP
    Appl Biochem Biotechnol; 2001; 96(1-3):71-82. PubMed ID: 11783902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Penicillium subrubescens is a promising alternative for Aspergillus niger in enzymatic plant biomass saccharification.
    Mäkelä MR; Mansouri S; Wiebenga A; Rytioja J; de Vries RP; Hildén KS
    N Biotechnol; 2016 Dec; 33(6):834-841. PubMed ID: 27469436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.
    Maehara L; Pereira SC; Silva AJ; Farinas CS
    Biotechnol Prog; 2018 May; 34(3):671-680. PubMed ID: 29388389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative splicing analysis of lignocellulose-degrading enzyme genes and enzyme variants in Aspergillus niger.
    Xu Y; Dong F; Wang R; Ajmal M; Liu X; Lin H; Chen H
    Appl Microbiol Biotechnol; 2024 Apr; 108(1):302. PubMed ID: 38639796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of
    Daly P; van Munster JM; Blythe MJ; Ibbett R; Kokolski M; Gaddipati S; Lindquist E; Singan VR; Barry KW; Lipzen A; Ngan CY; Petzold CJ; Chan LJG; Pullan ST; Delmas S; Waldron PR; Grigoriev IV; Tucker GA; Simmons BA; Archer DB
    Biotechnol Biofuels; 2017; 10():35. PubMed ID: 28184248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.