These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24060184)

  • 21. Facile synthesis of BaTiO3 nanotubes and their microwave absorption properties.
    Zhu YF; Zhang L; Natsuki T; Fu YQ; Ni QQ
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2101-6. PubMed ID: 22409350
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled synthesis of Ag/TiO2 core-shell nanowires with smooth and bristled surfaces via a one-step solution route.
    Du J; Zhang J; Liu Z; Han B; Jiang T; Huang Y
    Langmuir; 2006 Jan; 22(3):1307-12. PubMed ID: 16430298
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis and optical properties of co-doped ZnO submicrometer tubes from electrospun fiber templates.
    Ochanda F; Cho K; Andala D; Keane TC; Atkinson A; Jones WE
    Langmuir; 2009 Jul; 25(13):7547-52. PubMed ID: 19469558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diameter-controlled synthesis of α-Mn2O3 nanorods and nanowires with enhanced surface morphology and optical properties.
    Javed Q; Wang FP; Rafique MY; Toufiq AM; Li QS; Mahmood H; Khan W
    Nanotechnology; 2012 Oct; 23(41):415603. PubMed ID: 23011093
    [TBL] [Abstract][Full Text] [Related]  

  • 25. From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co(3)O(4) nanorods for high performance lithium-ion battery electrodes.
    Zhang H; Wu J; Zhai C; Ma X; Du N; Tu J; Yang D
    Nanotechnology; 2008 Jan; 19(3):035711. PubMed ID: 21817596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Redox responsive nanotubes from organometallic polymers by template assisted layer by layer fabrication.
    Song J; Jańczewski D; Guo Y; Xu J; Vancso GJ
    Nanoscale; 2013 Dec; 5(23):11692-8. PubMed ID: 24100304
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance.
    Ren C; Yang B; Wu M; Xu J; Fu Z; Lv Y; Guo T; Zhao Y; Zhu C
    J Hazard Mater; 2010 Oct; 182(1-3):123-9. PubMed ID: 20580489
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced photocatalytic activity of nanotube-like titania by sulfuric acid treatment.
    Yang SG; Quan X; Li XY; Fang N; Zhang N; Zhao HM
    J Environ Sci (China); 2005; 17(2):290-3. PubMed ID: 16295908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route.
    Gou X; Cheng F; Shi Y; Zhang L; Peng S; Chen J; Shen P
    J Am Chem Soc; 2006 Jun; 128(22):7222-9. PubMed ID: 16734476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TiO2-based nanotubes modified with nickel: synthesis, properties, and improved photocatalytic activity.
    Qamar M; Kim SJ; Ganguli AK
    Nanotechnology; 2009 Nov; 20(45):455703. PubMed ID: 19834243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-pot synthesis of CdS and Ni-doped CdS hollow spheres with enhanced photocatalytic activity and durability.
    Luo M; Liu Y; Hu J; Liu H; Li J
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1813-21. PubMed ID: 22387732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation of photocatalytic anatase nanowire films by in situ oxidation of titanium plate.
    Wu Y; Long M; Cai W; Dai S; Chen C; Wu D; Bai J
    Nanotechnology; 2009 May; 20(18):185703. PubMed ID: 19420626
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein nanotubes comprised of an alternate layer-by-layer assembly using a polycation as an electrostatic glue.
    Qu X; Lu G; Tsuchida E; Komatsu T
    Chemistry; 2008; 14(33):10303-8. PubMed ID: 18816557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization and photocatalytic activities of C, N and S co-doped TiO(2) with 1D nanostructure prepared by the nano-confinement effect.
    Dong F; Zhao W; Wu Z
    Nanotechnology; 2008 Sep; 19(36):365607. PubMed ID: 21828878
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Mg doping on GaN nanowires.
    Zhang D; Xue C; Zhuang H; Sun H; Cao Y; Huang Y; Wang Z; Wang Y
    Chemphyschem; 2009 Feb; 10(3):571-5. PubMed ID: 19142926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formation mechanism of Si3N4 nanowires via carbothermal reduction of carbonaceous silica xerogels.
    Wang F; Jin GQ; Guo XY
    J Phys Chem B; 2006 Aug; 110(30):14546-9. PubMed ID: 16869553
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly porous CdO nanowires: preparation based on hydroxy- and carbonate-containing cadmium compound precursor nanowires, gas sensing and optical properties.
    Guo Z; Li M; Liu J
    Nanotechnology; 2008 Jun; 19(24):245611. PubMed ID: 21825823
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mass production and photocatalytic activity of highly crystalline metastable single-phase Bi₂₀TiO₃₂ nanosheets.
    Zhou T; Hu J
    Environ Sci Technol; 2010 Nov; 44(22):8698-703. PubMed ID: 20979414
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and photoluminescence of Y2O3:RE3+ (RE=Eu, Tb, Dy) porous nanotubes templated by carbon nanotubes.
    Liu G; Hong G
    J Nanosci Nanotechnol; 2006 Jan; 6(1):120-4. PubMed ID: 16573081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of long indium nitride nanowires with uniform diameters in large quantities.
    Luo S; Zhou W; Zhang Z; Liu L; Dou X; Wang J; Zhao X; Liu D; Gao Y; Song L; Xiang Y; Zhou J; Xie S
    Small; 2005 Oct; 1(10):1004-9. PubMed ID: 17193386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.